- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- + 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)

如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥B

(1)试判断四边形OCED的形状,并说明理由;
(2)若∠DOC = 60°,BC = 6,求矩形ABCD的对角线长.
A. |

(1)试判断四边形OCED的形状,并说明理由;
(2)若∠DOC = 60°,BC = 6,求矩形ABCD的对角线长.
如图所示,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF,图中面积相等但不全等的三角形有_________对.

如果顺次连接一个四边形各边的中点,得到的新四边形是矩形,则原四边形一定是( )
A.平行四边形 | B.矩形 |
C.对角线互相垂直的四边形 | D.对角线相等的四边形 |
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过C、E两点.
(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G

(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G
A. (3)在(2)的条件下求四边形AGFE的面积. |

已知矩形ABCD的顶点A、D在圆上, B、C两点在圆内,请仅用没有刻度的直尺作图.
(1)如图1,已知圆心O,请作出直线l⊥AD;
(2)如图2,未知圆心O,请作出直线l⊥AD.

(1)如图1,已知圆心O,请作出直线l⊥AD;
(2)如图2,未知圆心O,请作出直线l⊥AD.


如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD沿点A对折,点D正好落在BC上的点F处,AE是折痕.
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段EF的长;
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段EF的长;
