- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- + 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
实践与探究
在平面直角坐标系中,四边形AOBC是矩形,点
(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,
在平面直角坐标系中,四边形AOBC是矩形,点

A. (1)如图(1),当点D落在BC边上时,求点D的坐标; (2)如图(2),当点D落在线段BE上时,AD与BC交于点H. ①求证:ΔADB≌ΔAOB; ②求点H的坐标. ![]() ![]() |
如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.
求证:ED=EC.
求证:ED=EC.

对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
(1)根据以上操作和发现,求
的值;
(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)
(1)根据以上操作和发现,求

(2)将该矩形纸片展开.
①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

如图,已知长方形ABCD中,∠A=∠D=∠B=∠C=90º,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm.

(1)求证:AF=D

(1)求证:AF=D
A. (2)若AD+DC=18,求AE的长. |
已知:如图,在矩形ABCD中,AC是对角线,AB=6cm,BC=8cm.点P从点D出发,沿DC方向匀速运动,速度为1cm/s,同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s,过点Q作QM∥AB交AC于点M,连接PM,设运动时间为t(s)(0<t<4).解答下列问题:

(1)当t为何值时,∠CPM=90°;
(2)是否存在某一时刻t,使S四边形MQCP=
?若存在,求出t的值;若不存在,请说明理由;
(3)当t为何值时,点P在∠CAD的角平分线上.

(1)当t为何值时,∠CPM=90°;
(2)是否存在某一时刻t,使S四边形MQCP=

(3)当t为何值时,点P在∠CAD的角平分线上.