- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将长方形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG = 68°,则∠BGE的度数为( )


A.134° | B.136° | C.138° | D.142° |
如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则S△ECF的值为 ( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知长方形
中,
,点
在边
上,由
往
运动,速度为
,运动时间为
秒,将
沿着
翻折至
,点
对应点为
,
所在直线与边
交与点
,
(1)如图
,当
时,求证:
;
(2)如图
,当
为何值时,点
恰好落在边
上;
(3)如图
,当
时,求
的长.
















(1)如图



(2)如图




(3)如图




如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )


A.6个 | B.5个 | C.4个 | D.3个 |
如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,

A. (1)判断四边形CEGF的形状,并证明你的结论; (2)若AB=3,BC=9,求线段CE最大值和最小值. |
