- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
情境·观察:
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A1C1D,如图1所示,将△A1C1D的顶点A1与点A重合,并绕点A按逆时针方向旋转,使点D,A(A1),B在同一条直线上,如图2所示,观察图2可知:旋转角∠CAC1 =________° ,与BC相等的线段是__________。

问题·探究:
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论。

关系·拓展:
如图4,已知正方形ABCD,P为边BC上任意一点,连结AP,把AP绕点P顺时针方向旋转90°,点A对应点为点A1,连接A1C,求∠A1CE的度数.
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A1C1D,如图1所示,将△A1C1D的顶点A1与点A重合,并绕点A按逆时针方向旋转,使点D,A(A1),B在同一条直线上,如图2所示,观察图2可知:旋转角∠CAC1 =________° ,与BC相等的线段是__________。

问题·探究:
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论。

关系·拓展:
如图4,已知正方形ABCD,P为边BC上任意一点,连结AP,把AP绕点P顺时针方向旋转90°,点A对应点为点A1,连接A1C,求∠A1CE的度数.
(2015山西省,第16题,3分)如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为_______.

(2016山东省济南市)如图1,在矩形纸片ABCD中,AB=
,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=____.


如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为______ .

(2015绥化,第21题,3分)在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的
处,则AP的长为__________.
