- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )


A.3 | B.![]() | C.5 | D.![]() |
如图,ABCD是一张矩形纸片,AB=3cm,BC=4cm,将纸片沿EF折叠,点B恰与点D重合,则折痕EF的长等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知,如图,在矩形ABCD中,
,
,点E为线段AB上一动点
不与点A、点B重合
,先将矩形ABCD沿CE折叠,使点B落在点F处,CF交AD于点H,若折叠后,点B的对应点F落在矩形ABCD的对称轴上,则AE的长是______.





如图矩形纸片ABCD中,
,
,P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别是E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是______.



在矩形ABCD中,AB=4,AD=8.
(1)如图①若E从B到C运动,F从D到A运动且BE=2DF,
(i)当DF为何值时四边形ECDF是矩形.
(ii)当DF为何值时EF=2
.
(2)如图②E在BC上,BE=3,F在CD上,将△ECF沿EF折叠,当C点恰好落在AD边上的G处时,求折痕EF的长.

(1)如图①若E从B到C运动,F从D到A运动且BE=2DF,
(i)当DF为何值时四边形ECDF是矩形.
(ii)当DF为何值时EF=2

(2)如图②E在BC上,BE=3,F在CD上,将△ECF沿EF折叠,当C点恰好落在AD边上的G处时,求折痕EF的长.


如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是( )


A.∠ABC=90° | B.AC=BD | C.OA=OB | D.OA=AD |
已知点E,F,M,N分别在矩形ABCD的边DA,AB,BC,CD上.
(1)如图1,若EM垂直平分BD,求证:四边形BMDE是菱形;
(2)如图2,若∠MAN=∠NMC=45°,求证:MC2=ND2+BM2;
(3)如图3,若四边形EFMN是平行四边形,AB=4,BC=8,求四边形EFMN周长的最小值.


(1)如图1,若EM垂直平分BD,求证:四边形BMDE是菱形;
(2)如图2,若∠MAN=∠NMC=45°,求证:MC2=ND2+BM2;
(3)如图3,若四边形EFMN是平行四边形,AB=4,BC=8,求四边形EFMN周长的最小值.


