- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是( )


A.若四边形EFGH是平行四边形,则AC与BD相等 |
B.若四边形EFGH是正方形,则AC与BD互相垂直且相等 |
C.若AC=BD,则四边形EFGH是矩形 |
D.若AC⊥BD,则四边形EFGH是菱形 |
如图,在菱形ABCD中,AB=4,∠ADN=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N.连接MD、AN,
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为_____时,四边形AMON是矩形;
②当AM的值为______时,四边形AMDN是菱形.
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为_____时,四边形AMON是矩形;
②当AM的值为______时,四边形AMDN是菱形.

如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为( )


A.仅小明对 | B.仅小亮对 | C.两人都对 | D.两人都不对 |
如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是( )


A.AB=BC | B.AC⊥BD | C.∠ABC=90° | D.∠1=∠2 |
已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.

如图,已知∠A,以点A为圆心,恰当长为半径画弧,分别交AE,AF于点B,D,继续分别以点B,D为圆心,线段AB长为半径画弧交于点C,连接BC,CD,则所得四边形ABCD为菱形,判定依据是:_____ .
