刷题首页
题库
初中数学
题干
如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为(
)
A.仅小明对
B.仅小亮对
C.两人都对
D.两人都不对
上一题
下一题
0.99难度 单选题 更新时间:2020-02-13 03:52:07
答案(点此获取答案解析)
同类题1
如图,正方形
ABCD
的对角线
AC
、
BD
相交于点
O
,过点
B
作
AC
的平行线,过点
C
作
DB
的平行线,它们相交于点
E
.求证:四边形
OBEC
是正方形.
同类题2
在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点
A.
(1)如图1,当点P与点O重合时,写出OE与OF的数量关系;
(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,写出OE与OF的数量关系;位置关系.
同类题3
若矩形的一个短边与长边的比值为
,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).
同类题4
如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DE,AE,BD交于点
A.
(1)求∠AFB的度数;
(2)求证:BF=EF;
(3)连接CF,直接用等式表示线段AB,CF,EF的数量关系.
同类题5
如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=
MF,④ME+MF=
MB.其中正确结论的有( )
A.4个 B.3个
B.2个
C.1个
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明