如图,四边形ABCD中,AB=CD,点E、F、G、H分别是BC、AD、BD、AC的中点,猜想四边形EHFG的形状,并说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,已知正方形ABCD的边长为5,且∠EAF=45°,把△ABE绕点A逆时针旋转90°,落在△ADG的位置.
(1)请在图中画出△ADG.
(2)证明:∠GAF=45°.
(3)求点AEF的距离AH.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CD.连结DE,DF,EF.在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形;
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是_____________.
当前题号:3 | 题型:填空题 | 难度:0.99
(满分l0分)如图,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①,②,③所示(图中a,b,c…表示长度,α,β,θ…表示角度).

(1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,在△ABC中,AB>AC,D,E分别是AB,AC上的点,将△ADE沿线段DE翻折,使点A落在边BC上,记为A′.若四边形AD A′E是菱形,则下列说法中正确的是
A.DE是△ABC的中位线
B.AA′是BC边上的中线
C.AA′是BC边上的高
D.AA′是△ABC的角平分线
当前题号:5 | 题型:单选题 | 难度:0.99
若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=B
A.

(1)求证:CE=CF
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中积累的经验和知识,完成下题:
如图2,四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
当前题号:7 | 题型:解答题 | 难度:0.99
红丝带是关注艾滋病防治问题的国际性标志.将宽为的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______
当前题号:8 | 题型:填空题 | 难度:0.99
已知:如图所示的一张矩形纸片ABCD,(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE,若AE=8cm,△ABF的面积为33cm,则△ABF的周长等于(  )
A.24cm
B.22cm
C.18cm
D.20cm
当前题号:9 | 题型:解答题 | 难度:0.99
如图,已知,四边形ABCD为梯形,分别过点AD作底边BC的垂线,垂足分别为点EF.四边形ADFE是何种特殊的四边形?请写出你的理由.
当前题号:10 | 题型:解答题 | 难度:0.99