刷题首页
题库
初中数学
题干
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为
a
,较短直角边长为
b
,若
ab
=8,大正方形的面积为25,则小正方形的边长为
_____
.
上一题
下一题
0.99难度 填空题 更新时间:2020-02-21 09:48:16
答案(点此获取答案解析)
同类题1
利用图或图两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为___________,该定理的结论其数学表达式是__________.
同类题2
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S
1
+S
2
+S
3
=10,则S2的值是_________.
同类题3
2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形.如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为( )
A.10+
B.10+
C.10+
D.24
同类题4
如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:下面图中的三个三角形均是直角三角形,围成的梯形是直角梯形)
同类题5
我们已经知道,有一个内角是直角的三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边.数学家已发现在一个直角三角形中,两条直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是
和
,斜边长度是
,那么可以用数学语言表达为:
.
(1)在图中,若
,
,则
等于多少;
(2)观察图,利用面积与代数恒等式的关系,试说明
的正确性.其中两个相同的直角三角形边
、
在一条直线上;
(3)如图③所示,折叠长方形
的一边
,使点
落在
边的点
处,已知
,
,利用上面的结论求的长.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法