刷题首页
题库
初中数学
题干
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为
a
,较短直角边长为
b
,若
,大正方形的面积为13,则小正方形的面积为( )
A.3
B.4
C.5
D.6
上一题
下一题
0.99难度 单选题 更新时间:2020-02-18 05:37:05
答案(点此获取答案解析)
同类题1
阅读下面的材料:勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为
a
,
b
,斜边为
c
,然后按图1的方法将它们摆成正方形.
由图1可以得到(
a
+
b
)
2
=4×
ab
+
c
2
整理,得
a
2
+2
ab
+
b
2
=2
ab
+
c
2
.
所以
a
2
+
b
2
=
c
2
.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.
同类题2
我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )
A.
B.
C.
D.
同类题3
在平面直角坐标系中,已知△ABC顶点坐标分别为A(0,3),B(1,1),C(﹣3,﹣1),△DEF与△ABC关于y轴对称,且A,B,C依次对应D,E,F,
(1)请写出D,E,F的坐标.
(2)在平面直角坐标系中画出△ABC和△DE
A.
(3)经过计算△DEF各边长度,发现DE、EF、FD满足什么关系式,写出关系式.
(4)求△DEF的面积.
同类题4
(1)如图①是一个重要公式的几何解释.请你写出这个公式;
(2)如图②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三点在一条直线上.试证明∠ACE=90°;
(3)伽菲尔德(G
a
rfield,1881年任美国第20届总统)利用(1)中的公式和图②证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.
同类题5
如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为__.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法