刷题首页
题库
初中数学
题干
我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若
,
,则长方形的面积为______.
上一题
下一题
0.99难度 填空题 更新时间:2020-02-12 02:29:20
答案(点此获取答案解析)
同类题1
如图是2002年在北京召开的国际数学家大会的会徽,它由4个相同的直角三角形拼成,已知直角三角形的两条直角边长分别为3和4,则大正方形ABCD和小正方形EFGH的面积比是()
A.1:5
B.1:25
C.5:1
D.25:1
同类题2
我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )
A.
B.
C.
D.
同类题3
△
ABC
的三边长分别为
a
,
b
,
c
.下列条件,其中能判断△
ABC
是直角三角形的个数有( )
①∠
A
=∠
B
﹣∠
C
②
a
2
=(
b
+
c
)(
b
﹣
c
)
③∠
A
:∠
B
:∠
C
=3:4:5
④
a
:
b
:
c
=5:12:13
A.1个
B.2个
C.3个
D.4个
同类题4
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜的发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:
(1) 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°.求证:a
2
+b
2
=c
2
.
(2) 请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a
2
+b
2
=c
2
.
同类题5
(1)以a,b为直角边,c为斜边作两个全等的Rt△ABE与Rt△FCD拼成如图1所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE ≌△FCD,AE
DF,请你证明:
;
(2)在(1)中,固定△FCD,再将△ABE沿着BC平移到如图2的位置(此时B,F重合),请你重新证明:
.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法