刷题首页
题库
初中数学
题干
阅读材料:如图1,
中,点
,
在边
上,点
在
上,
,
,
,延长
,
交于点
,
,求证:
.
分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.
①小明的想法是:将
放到
中,沿等腰
的对称轴进行翻折,即作
交
于
(如图2)
②小白的想法是:将
放到
中,沿等腰
的对称轴进行翻折,即作
交
的延长线于
(如图3)
经验拓展:等边
中,
是
上一点,连接
,
为
上一点,
,过点
作
交
的延长线于点
,
,若
,
,求
的长(用含
,
的式子表示).
上一题
下一题
0.99难度 解答题 更新时间:2020-03-04 09:15:58
答案(点此获取答案解析)
同类题1
(初步探索)
截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△
ABC
是等边三角形,点
D
是边
BC
下方一点,∠
BDC
=120°,探索线段
DA
、
DB
、
DC
之间的数量关系;
(灵活运用)
(2)如图2,△
ABC
为等边三角形,直线
a
∥
AB
,
D
为
BC
边上一点,∠
ADE
交直线
a
于点
E
,且∠
ADE
=60°.求证:
CD
+
CE
=
CA
;
(延伸拓展)
(3)如图3,在四边形
ABCD
中,∠
ABC
+∠
ADC
=180°,
AB
=
AD
.若点
E
在
CB
的延长线上,点
F
在
CD
的延长线上,满足
EF
=
BE
+
FD
,请直接写出∠
EAF
与∠
DAB
的数量关系.
同类题2
如图,
中,
是
的外角平分线,
是
上异于
的任意一点,则( )
A.
B.
C.
D.
同类题3
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在
中,点
分别在
上,设
相交于点
,若
,
.请你写出图中一个与
相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在
中,如果
是不等于
的锐角,点
分别在
上,且
.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
同类题4
在正方形ABCD中,点G在AB上,点H在BC上,且∠GDH=45°,DG、DH分别与对角线AC交于点E、F,则线段AE、EF、FC之间的数量关系为_______
.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——其他模型