- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- + 全等三角形的辅助线问题
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
实践与探究
在平面直角坐标系中,四边形AOBC是矩形,点
(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,
在平面直角坐标系中,四边形AOBC是矩形,点

A. (1)如图(1),当点D落在BC边上时,求点D的坐标; (2)如图(2),当点D落在线段BE上时,AD与BC交于点H. ①求证:ΔADB≌ΔAOB; ②求点H的坐标. ![]() ![]() |
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在
中,点
分别在
上,设
相交于点
,若
,
.请你写出图中一个与
相等的角,并猜想图中哪个四边形是等对边四边形;

(3)在
中,如果
是不等于
的锐角,点
分别在
上,且
.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在









(3)在






在正方形
中,点
,
,
分别是边
,
,
的中点,点
是直线
上一点.将线段
绕点
逆时针旋转
,得到线段
,连接
.

(1)如图1,请直接写出
与
的数量及位置关系;
(2)如图2,若点
在线段
的延长线上,猜想线段
,
,
之间满足的数量关系,并证明你的结论.
(3)若点
在线段
的反向延长线上,请在图3中补全图形并直接写出线段
,
,
之间满足的数量关系.















(1)如图1,请直接写出


(2)如图2,若点





(3)若点





(操作)BD是矩形ABCD的对角线,
,
,将
绕着点B顺时针旋转
(
)得到
,点A、D的对应点分别为E、

(1)求证:
;
(2)CG的长为________.






A.若点E落在BD上,如图①,则![]() (探究)当点E落在线段DF上时,CD与BE交于点 | B.其它条件不变,如图②. |

(1)求证:

(2)CG的长为________.
如图1,在
中,
,点
分别在边
上,
,连接
,点
分别为
的中点.

(1)观察猜想
图1中,线段
与
的数量关系是________,
的度数是________;
(2)探究证明
把
绕点
逆时针方向旋转到图2的位置,连接
,判断
的形状,并说明理由;
(3)拓展延伸
把
绕点
在平面内自由旋转,若
,请直接写出
面积的取值范围.









(1)观察猜想
图1中,线段



(2)探究证明
把




(3)拓展延伸
把




如图,点
的坐标为
,
轴,垂足为
,
轴,垂足为
,点
分别是射线
、
上的动点,且点
不与点
、
重合,
.

(1)如图1,当点
在线段
上时,求
的周长;
(2)如图2,当点
在线段
的延长线上时,设
的面积为
,
的面积为
,请猜想
与
之间的等量关系,并证明你的猜想.














(1)如图1,当点



(2)如图2,当点








(问题情境)如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
(1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是 .
(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.
(2)(尝试应用)如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.
(3)(拓展延伸)如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.
(1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是 .
(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.
(2)(尝试应用)如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.
(3)(拓展延伸)如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.
