- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- + 向量
- 向量的运算
- 向量的坐标表示,数量积
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
已知椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
、
两点.试判断是否存在直线
,使得点
是
的(1)重心;(2)垂心.若存在,求出对应的直线
的方程;若不存在,请说明理由.










奔驰定理:已知
是
内的一点,
,
,
的面积分别为
,
,
,则
.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz)的logo很相似,故形象地称其为“奔驰定理”若
是锐角
内的一点,
,
,
是
的三个内角,且点
满足
,则必有( )





















A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,在边长为2的正六边形ABCDEF中,动圆⊙Q的半径为1,圆心在线段CD(含端点)上运动,P为⊙Q上及内部的动点,设向量
.则m+n的取值范围是_______ .

