- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- + 向量的运算
- 向量的坐标表示,数量积
奔驰定理:已知
是
内的一点,
,
,
的面积分别为
,
,
,则
.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz)的logo很相似,故形象地称其为“奔驰定理”若
是锐角
内的一点,
,
,
是
的三个内角,且点
满足
,则必有( )





















A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,在边长为2的正六边形ABCDEF中,动圆⊙Q的半径为1,圆心在线段CD(含端点)上运动,P为⊙Q上及内部的动点,设向量
.则m+n的取值范围是_______ .


已知△ABC三顶点的坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,且满足
,
0,则
的最小值是_____.


