- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理概念辨析
- + 数与式中的归纳推理
- 图与形中的归纳推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代数学名著《九章算术》记载:“勾股各自乘,并之,为弦实”,用符号表示为a2+b2=c2(a,b,c∈N*),把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组勾股数的第二个数是________.
绝对值|x﹣1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,
的几何意义即为点x与点a、点b的距离之和.
(1)直接写出
与
的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=
.试猜想:若n为奇数,则当x∈ 时S取到最小值;若n为偶数,则当x∈ 时,S取到最小值;(直接写出结果即可)
(3)求
的最小值.

(1)直接写出


(2)设a1≤a2≤…≤an是给定的n个实数,记S=

(3)求

埃及数学中有一个独特现象:除
用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式,例如
可以这样理解:假定有两个面包,要平均分给5个人,如果每人
不够,每人
,余
,再将这
分成5份,每人得
,这样每人分得
,形如
的分数的分解:
,
,
,按此规律,
_____.














考察下列一组不等式:
,
,
,….将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是______.



我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数
的不足近似值和过剩近似值分别为
和
,则
是
的更为精确的不足近似值或过剩近似值.我们知道
···,若令
,则第一次用“调日法”后得
是
的更为精确的过剩近似值,即
,若每次都取最简分数,那么第四次用“调日法”后可得
的近似分数为____________.











