- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 归纳推理
- 归纳推理概念辨析
- 数与式中的归纳推理
- 图与形中的归纳推理
- 类比推理
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an)+,则得到一个新数列{(an)+}.例如,若数列{an}是1,2,3…,n,…,则数列{(an)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,an=n2,则(a5)+=_____,((an)+)+=_____.
如图,若把正整数从小到大按以下“
型”的规律排序,则从2017至2019之间的两个箭头方向依次( )



A.↓ → | B.→ ↓ | C.↑ → | D.→ ↑ |
一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆).
○●○○●○○○●○○○○…
若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2019个圆中有________ 个实心圆.
○●○○●○○○●○○○○…
若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2019个圆中有
已知以区间
上的整数为分子,以
为分母的数组成集合
,其所有元素的和为
;以区间
上的整数为分子,以
为分母组成不属于集合
的数组成集合
,其所有元素的和为
;……依此类推以区间
上的整数为分子,以
为分母组成不属于
,
…
的数组成集合
,其所有元素的和为
,若数列
前
项和为
,则
__________.




















观察分析下表中的数据:
猜想一般凸多面体中,
所满足的等式是_________.
多面体 | 面数(![]() | 顶点数(![]() | 棱数(![]() |
三棱锥 | 5 | 6 | 9 |
五棱锥 | 6 | 6 | 10 |
立方体 | 6 | 8 | 12 |

下面几种推理过程是演绎推理的是( )
A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人 |
B.由三角形的性质,推测空间四面体的性质 |
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 |
D.在数列![]() ![]() ![]() ![]() ![]() |
在探究“杨辉三角”中的一些秘密时,小明同学发现了一组有趣的数:
,请根据上面数字的排列规律,写出下一组的规律并计算其结果:_____.
