- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义
、
、
、
分别对应下列图形,

那么下面的图形中,可以表示
,
的分别是( )






那么下面的图形中,可以表示



A.(1)、(2) | B.(2)、(3) | C.(2)、(4) | D.(1)、(4) |
“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )
A.乙亥年 | B.戊戌年 | C.庚子年 | D.辛丑年 |
德国数学家莱布尼兹发现了如图所示的单位分数三角形(单位分数是指分子为
﹑分母为正整数的分数),称为莱布尼兹三角形.根据前
行的规律,第
行的左起第
个数为______.





一种十字绣作品由相同的小正方形构成,图①②③④分别是制作该作品前四步时对应的图案,按照此规律,第
步完成时对应图案中所包含小正方形的个数记为
.

(1)求出
,
,
的值;
(2)利用归纳推理,归纳出
与
的关系式;并猜想
的表达式,不需要证明.



(1)求出



(2)利用归纳推理,归纳出



某校高二(2)班每周都会选出两位“进步之星”,期中考试之后一周“进步之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是进步之星”,小谭说:“小赵说的对”. 已知这四人中有且只有两人的说法是正确的,则“进步之星”是( )
A.小马、小谭 | B.小马、小宋 | C.小赵、小谭 | D.小赵、小宋 |
在平面几何中,
的
内角平分线
分
所成线段的比
(如图所示),把这个结论类比到空间:在三棱锥
中(如图所示),面
平分二面角
且与
相交于点
,则得到的结论是______.













现有一场专家报告会,张老师带甲,乙,丙,丁四位同学参加,其中有一个特殊位置可与专家近距离交流,张老师看出每个同学都想去坐这个位置,因此给出一个问题,谁能猜对,谁去坐这个位置.问题如下:某班10位同学参加一次全年级的高二数学竞赛,最后一道题只有6名同学
,
,
,
,
,
尝试做了,并且这6人中只有1人答对了.听完后,四个同学给出猜测如下:甲猜:
或
答对了;乙猜:
不可能答对;丙猜:
,
,
当中必有1人答对了;丁猜:
,
,
都不可能答对,在他们回答完后,张老师说四人中只有1人猜对,则张老师把特殊位置给了__________.















祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆
所围成的平面图形绕
轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )


A.![]() | B.![]() |
C.![]() | D.![]() |