- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 合情推理与演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在讨论勾股定理的过程中,《九章算术》提供了许多整勾股数,如
,等等.其中最大的数称为“弦数”,后人在此基础上进一步研究,得到如下规律:若勾股数组中的某一个数
是确定的奇数(大于1),把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数,若勾股数组中的某一个数
是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数.由此得到的这种勾股数称之为“由
生成的一组勾股数”.若“由17生成的这组勾股数”的“弦数”为
,“由20生成的这组勾股数”的“弦数”为
,则
____________.







在讨论勾股定理的过程中,《九章算术》提供了许多整勾股数,如
,等等.其中最大的数称为“弦数”,后人在此基础上进一步研究,得到如下规律:若勾股数组中的某一个数
是确定的奇数(大于1),把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数,称之为“由
生成的一组勾股数”.则“由17生成的这组勾股数”的“弦数”为_______________.



已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为__________.





对于问题“已知关于
的不等式
的解集为
,解关于
的不等式
的”,给出一种解法:由
的解集为
,得
的解集为
.即关于
的不等式
的解集为
.类比上述解法,若关于
的不等式
的解集为
,则关于
的不等式
的解集为_____.

















命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )

A.![]() | B.![]() | C.![]() | D.![]() |
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数,他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列
,将可被5整除的三角形数按从小到大的顺序组成一个新数列
,可以推测
是数列
中的第________项.





中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:
,则7288用算筹式可表示为__________ .

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:
