- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如下表:
(
).
附表:
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为
,求
的数学期望
.
| 与教育有关 | 与教育无关 | 合计 |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合计 | 65 | 15 | 80 |
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:

附表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为



某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的
列联表,并判断能否有95%的把握认为“是否赞成高考改革方案与城乡户口有关”?

注:
,其中
.

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为
,试求
的分布列及数学期望
.

(1)根据已知条件与等高条形图完成下面的


注:



(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为



某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:
(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为
,求
的分布列和期望值;
(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?
附:

| 爱好 | 不爱好 | 合计 |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为


(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?
附:


近年来我国电子商务行业迎来发展的新机遇,2017年双11全天交易额达到1682亿元,为规范和评估该行业的情况,相关管理部门制定出针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行评价,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)完成关于商品和服务评价的
列联表,判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量
:
①求对商品和服务全为好评的次数
的分布列;
②求
的数学期望和方差.
附:临界值表:

的观测值:
(其中
)
关于商品和服务评价的
列联表:
(1)完成关于商品和服务评价的

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量

①求对商品和服务全为好评的次数

②求

附:临界值表:




关于商品和服务评价的


在某校矩形的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在
范围内,规定分数在80以上(含80)的同学获奖,按文理科用分层抽样的放发抽取200人的成绩作为样本,得到成绩的频率分布直方图.

(Ⅰ)填写下面
的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”;
(Ⅱ)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为
,求
的分布列及数学期望.

附表及公式:
,其中



(Ⅰ)填写下面

(Ⅱ)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为



附表及公式:



由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了
两个地区的
名观众,得到如下的
列联表:

已知在被调查的
名观众中随机抽取
名,该观众是
地区当中“非常满意”的观众的概率为
,且
.
(1)现从
名观众中用分层抽样的方法抽取
名进行问卷调查,则应抽取“满意”的
地区的人数各是多少.
(2)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系.
(3)若以抽样调查的频率为概率,从
地区随机抽取
人,设抽到的观众“非常满意”的人数为
,求
的分布列和期望.
附:参考公式:




已知在被调查的





(1)现从



(2)完成上述表格,并根据表格判断是否有

(3)若以抽样调查的频率为概率,从




![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
附:参考公式:

电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:
.

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
| 非体育迷 | 体育迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:

P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
近年电子商务蓬勃发展,
年某网购平台“双
”一天的销售业绩高达
亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出
次成功交易,并对其评价进行统计,网购者对商品的满意率为
,对快递的满意率为
,其中对商品和快递都满意的交易为
次.
(1)根据已知条件完成下面的
列联表,并回答能否有
的把握认为“网购者对商品满意与对快递满意之间有关系”?
(2)若将频率视为概率,某人在该网购平台上进行的
次购物中,设对商品和快递都满意的次数为随机变量
,求
的分布列和数学期望
.
附:
(其中
为样本容量)







(1)根据已知条件完成下面的


| 对快递满意 | 对快递不满意 | 合计 |
对商品满意 | ![]() | | |
对商品不满意 | | | |
合计 | | | ![]() |
(2)若将频率视为概率,某人在该网购平台上进行的




附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
2017年5月27日当今世界围棋排名第一的柯洁在与
的人机大战中中盘弃子认输,至此柯洁与
的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面
列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?
(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为
,若每次抽取的结果是相互独立的,求
的分布列,数学期望和方差.
独立性检查临界值表:
(参考公式:
,其中
)



(1)请根据已知条件完成下面

| 非围棋迷 | 围棋迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为


独立性检查临界值表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(参考公式:


在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩均分布在
范围内,规定分数在80以上(含80)的同学获奖,按文理科采取分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图.

(1)填写上面
的列联表,并判断能否有95%以上的把握认为“获奖与学生的文理科有关”;
(2)将上述调查所得的频率视为概率. 现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为
,求
的分布列及数学期望.

| 文科生 | 理科生 | 合计 |
获奖 | 5 | | |
不获奖 | | | |
合计 | 50 | | 200 |

(1)填写上面

(2)将上述调查所得的频率视为概率. 现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为

