- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由中央电视台综合频道(
)和唯众传媒联合制作的《开讲啦》是中国首档青春电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了
、
两个地区的100名观众,得到如下的
列联表:
已知在被调查的100名观众中随机抽取1名,该观众是
地区当中“非常满意”的观众的概率为
,且
.
(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的
、
地区的人数各是多少;
(Ⅱ)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系;
(Ⅲ)若以抽样调查的频率为概率,从
地区随机抽取3人,设抽到的观众“非常满意”的人数为
,求
的分布列和期望.
附:参考公式:




| 非常满意 | 满意 | 合计 |
![]() | 30 | ![]() | |
![]() | ![]() | ![]() | |
合计 | | | |
已知在被调查的100名观众中随机抽取1名,该观众是



(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的


(Ⅱ)完成上述表格,并根据表格判断是否有

(Ⅲ)若以抽样调查的频率为概率,从



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
附:参考公式:

某饭店从某水产养殖厂购进一批生蚝,并随机抽取了
只统计质量,得到结果如表所示:
(1)若购进这批生蚝
,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);
(2)以频率视为概率,若在本次购买的生蚝中随机挑选
个,记质量在
间的生蚝的个数为
,求
的分布列及数学期望.

质量![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数量(只) | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)若购进这批生蚝

(2)以频率视为概率,若在本次购买的生蚝中随机挑选




(2018届呼和浩特市高三年级第一次质量普查考试)为了了解校园噪音情况,学校环保协会对校园噪音值(单位:分贝)进行了
天的监测,得到如下统计表:
(1)根据该统计表,求这
天校园噪音值的样本平均数(同一组的数据用该组的中点值作代表).
(2)根据国家声环境质量标准:“环境噪音值超过
分贝,视为重度噪音污染;环境噪音值不超过
分贝,视为轻度噪音污染.”如果把由上述统计表算得的频率视作概率,回答下列问题:
(i)求周一到周五的五天中恰有两天校园出现重度噪音污染而其余三天都是轻度噪音污染的概率.
(ii)学校要举行为期
天的“汉字听写大赛”校园选拔赛,把这
天校园出现的重度噪音污染天数记为
,求
的分布列和方差
.

噪音值(单位:分贝) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据该统计表,求这

(2)根据国家声环境质量标准:“环境噪音值超过


(i)求周一到周五的五天中恰有两天校园出现重度噪音污染而其余三天都是轻度噪音污染的概率.
(ii)学校要举行为期





九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:
(1)若购进这批九节虾35000g,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);
(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X,求X的分布列.
质量/g | [5,15) | [15,25) | [25,35) | [35,45) | [45,55] |
数量 | 4 | 12 | 11 | 8 | 5 |
(1)若购进这批九节虾35000g,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);
(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X,求X的分布列.
从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.

(1)估计从该市高一学生中随机抽取一人,体重超过60kg的概率;
(2)假设该市高一学生的体重X服从正态分布N(57,σ2).
①利用(1)的结论估计该高一某个学生体重介于54~57kg之间的概率;
②从该市高一学生中随机抽取3人,记体重介于54~57kg之间的人数为Y,利用(1)的结论,求Y的分布列.

(1)估计从该市高一学生中随机抽取一人,体重超过60kg的概率;
(2)假设该市高一学生的体重X服从正态分布N(57,σ2).
①利用(1)的结论估计该高一某个学生体重介于54~57kg之间的概率;
②从该市高一学生中随机抽取3人,记体重介于54~57kg之间的人数为Y,利用(1)的结论,求Y的分布列.
某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数
在
内,且其频率
满足
(其中
,
).

(1)求
的值;
(2)请画出这20名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组区间的中点值作代表);
(3)将此样本的频率估计为总体的概率,随机调查4名该校的大一理工科新生,记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量,求的数学期望.







(1)求

(2)请画出这20名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组区间的中点值作代表);
(3)将此样本的频率估计为总体的概率,随机调查4名该校的大一理工科新生,记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量,求的数学期望.
为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:
,
,
,
,
,并统计如图所示:

并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
(1)根据图中的数据,试估计该款电视机的平均寿命;
(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;
(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.
参考公式及数据:
,其中
.






并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
| 愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 |
男性 | 800 | | 1000 |
女性 | | 600 | |
总计 | 1200 | | |
(1)根据图中的数据,试估计该款电视机的平均寿命;
(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;
(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.
参考公式及数据:


![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某校为了调查“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组,画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.

(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数, 利用样本估计总体,求ξ的分布列和数学期望Eξ.

(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数, 利用样本估计总体,求ξ的分布列和数学期望Eξ.
统计全国高三学生的视力情况,得到如图所示的频率分布直方图,由于不慎将部分数据丢失,但知道前4组的频率成等比数列,后6组的频率成等差数列.
(Ⅰ)求出视力在[4.7,4.8]的频率;
(Ⅱ)现从全国的高三学生中随机地抽取4人,用
表示视力在[4.3,4.7]的学生人数,写出
的分布列,并求出
的期望与方差.
(Ⅰ)求出视力在[4.7,4.8]的频率;
(Ⅱ)现从全国的高三学生中随机地抽取4人,用




渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.

(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;
(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如下表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于
的人数为
,求
的分布列及数学期望.

(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;
(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如下表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于



