- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- + 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词,寻文化基因,品生活之美”为宗旨.每一期的比赛包含以下环节:“个人追逐赛”、“攻擂资格争夺赛”和“擂主争霸赛”,其中“擂主争霸赛”由“攻擂资格争夺赛”获胜者与上一场擂主进行比拼.“擂主争霸赛”共有九道抢答题,抢到并答对者得一分,答错则对方得一分,率先获得五分者即为该场擂主.在《中国诗词大会》的某一期节目中,若进行“擂主争霸赛”的甲乙两位选手每道抢答题得到一分的概率都是为0.5,则抢答完七道题后甲成为擂主的概率为________.
网购已经成为一种新型的购物方式,2018年天猫双11,仅1小时47分钟成交额超过1000亿元,比2017年达到1000亿元的时间缩短了7个小时,为了研究市民对网购的依赖性,从A城市16﹣59岁人群中抽取一个容量为100的样本,得出下列2×2列联表,其中16﹣39岁为青年,40﹣59岁为中年,当日消费金额超过1000元为消费依赖网购,否则为消费不依赖网购.
(1)完成2×2列联表,计算X2值,并判断是否有95%的把握认为网购依赖和年龄有关?
(2)把样本中的频率当作概率,随机从A城市中选取5人,其中依赖网购的人数为随机变量X,求随机变量X的分布列及期望(附:X2
,当X2>3.841时,有95%的把握说事件A与B有关,当X2≤3.841时,没有95%的把握说事件A与B有关)
| 依赖网购 | 不依赖网购 | 小计 |
青年(16﹣39岁) | 40 | 20 | |
中年(40﹣59岁) | 20 | 20 | |
小计 | | | |
(1)完成2×2列联表,计算X2值,并判断是否有95%的把握认为网购依赖和年龄有关?
(2)把样本中的频率当作概率,随机从A城市中选取5人,其中依赖网购的人数为随机变量X,求随机变量X的分布列及期望(附:X2

甲市有
万名高三学生参加了天一大联考,根据学生数学成绩(满分:
分)的大数据分析可知,本次数学成绩
服从正态分布,即
,且
,
.
(1)求
的值.
(2)现从甲市参加此次联考的高三学生中,随机抽取
名学生进行问卷调查,其中数学成绩高于
分的人数为
,求
.
(3)与甲市相邻的乙市也有
万名高三学生参加了此次联考,且其数学成绩
服从正态分布
.某高校规定此次联考数学成绩高于
分的学生可参加自主招生考试,则甲和乙哪个城市能够参加自主招生考试的学生更多?
附:若随机变量
,则
,
,
.






(1)求

(2)现从甲市参加此次联考的高三学生中,随机抽取




(3)与甲市相邻的乙市也有




附:若随机变量




“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较髙,他独自一人解决项目M的概率为
;同时,有n个水平相同的人也在相互独立地研究项目M,他们各自独立地解决项目M的概率都是0.5,这个人的团队解决项目M的概率为
,若
,则n的最小值是______________.



某校为了解学生一周的课外阅读情况,随机抽取了100名学生对其进行调查.下面是根据调查结果绘制的一周学生阅读时间(单位:分钟)的频率分布直方图,且将一周课外阅读时间不低于200分钟的学生称为“阅读爱好”,低于200分钟的学生称为“非阅读爱好”.

(1)根据已知条件完成下面
列联表,并据此判断是否有97.5%的把握认为“阅读爱好”与性别有关?
(2)将频率视为概率,从该校学生中用随机抽样的方法抽取4人,记被抽取的四人中“阅读爱好”的人数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望
.
附:
.

(1)根据已知条件完成下面

| 非阅读爱好 | 阅读爱好 | 合计 |
男女 | | | 50 |
合计 | | 14 | |
男女 | | | |
(2)将频率视为概率,从该校学生中用随机抽样的方法抽取4人,记被抽取的四人中“阅读爱好”的人数为



附:
![]() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |

某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了200位高三学生的成绩进行统计分析得到如图所示频率分布直方图:

(1)计算这些学生成绩的平均值
及样本方差
(同组的数据用该组区间的中点值代替);
(2)由频率分布直方图认为,这次成绩X近似服从正态分布
,其中μ近似为样本平均数
,
近似为样本方差
.
(i)求
;
(ii)从高三学生中抽取10位学生进行面批,记
表示这10位学生成绩在
的人数,利用(i)的结果,求数学期望
.
附:
;
若
,则
,
.

(1)计算这些学生成绩的平均值


(2)由频率分布直方图认为,这次成绩X近似服从正态分布




(i)求

(ii)从高三学生中抽取10位学生进行面批,记



附:

若



为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为
,第二轮检测不合格的概率为
,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X元,则P(X≥-80)=________.


某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2018年享受此项政策的自主创业人员中抽取了100人进行调查统计,选择的贷款期限的频数如下表:
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
频数 | 20 | 40 | 20 | 10 | 10 |
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的费用,写出X的分布列.