- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,
表示用电量为第二阶梯的户数,求
的概率分布列和数学期望.
阶梯级别 | 第一阶梯电量 | 第二阶梯电量 | 第三阶梯电量 |
月用电量范围(单位:![]() | ![]() | ![]() | ![]() |
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,


某架飞机载有5位空降兵依次空降到A,B,C三个地点,每位空降兵都要空降到A,B,C中的任意一个地点,且空降到每一个地点的概率都是
,用ξ表示地点C空降人数,求:

(1)地点A空降1人,地点B,C各空降2人的概率;
(2)随机变量ξ的分布列.
甲,乙两人进行围棋比赛,共比赛
局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为
.
(1)求
与
的值;
(2)试比较
与
的大小,并证明你的结论.



(1)求


(2)试比较


某市医疗保险实行定点医疗制度,按照“就近就医、方便管理” 的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有
三家社区医院,并且他们的选择是等可能的、相互独立的.
(1)求甲、乙两人都选择
社区医院的概率;
(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设在4名参加保险人员中选择
社区医院的人数为
,求
的分布列和数学期望及方差.

(1)求甲、乙两人都选择

(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设在4名参加保险人员中选择



2016年1月1日起全国统一实施全面的两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100人并对调查结果进行统计,70后不打算生二胎的占全部调查人数的
,80后打算生二胎的占全部被调查人数的
,100人中共有75人打算生二胎.
(1)根据调查数据,判断是否有
以上把握认为“生二胎与年龄有关”,并说明理由;
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为
,求随机变量
的分布列,数学期望
和方差
.
参考公式:
(
,其中
)


(1)根据调查数据,判断是否有

(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为




参考公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(


中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为



(Ⅱ)现准备勘探新井





(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值


现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量
,求
的分布列(概率用算式表示)、数学期望和方差.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量



在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调査了某地区的
个捐款居民每月平均的经济收入.在捐款超过
元的居民中,每月平均的经济收入没有达到
元的有
个,达到
元的有
个;在捐款不超过
元的居民中,每月平均的经济收入没有达到
元的有
个.
(1)在下图表格空白处填写正确数字,并说明是否有
以上的把握认为捐款数额是否超过
元和居民毎月平均的经济收入是否达到
元有关?
(2)将上述调查所得到的频率视为概率. 现在从该地区大量居民中,采用随机抽样方法毎次抽取
个居民,共抽取
次,记被抽取的
个居民中经济收入达到
元的人数为
,求
和期望
的值.
附:
,其中










(1)在下图表格空白处填写正确数字,并说明是否有



(2)将上述调查所得到的频率视为概率. 现在从该地区大量居民中,采用随机抽样方法毎次抽取







| 每月平均经济收入达到![]() | 每月平均经济收入没有达到![]() | 合计 |
捐款超过![]() | | | |
捐款不超过![]() | | | |
合计 | | | |
附:



社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的
位大学生,得到信息如下表:
(Ⅰ)从所抽取的
人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;
(Ⅱ)是否有
以上的把握认为“关注‘星闻’与性别有关”,并说明理由;
(Ⅲ)把以上的频率视为概率,若从该大学随机抽取
位男大学生,设这
人中关注“星闻”的人数为
,求
的分布列及数学期望.
附:
.


(Ⅰ)从所抽取的

(Ⅱ)是否有

(Ⅲ)把以上的频率视为概率,若从该大学随机抽取




附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了 105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀,甲校:

乙校:

(I )计算x,y的值;
(II)由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5% 的把握认为两个学校的数学成绩有差异.
(III)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望;
附:


乙校:

(I )计算x,y的值;
(II)由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5% 的把握认为两个学校的数学成绩有差异.
(III)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望;
附:

