- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的
列联表:
根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为X,求X的分布列及数学期望。
附:
.

| 支持 | 不支持 | 合计 |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为X,求X的分布列及数学期望。
附:

![]() | 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登录,给当地人民造成了巨大的财产损失,某记着调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成
,
,
,
,
五组,并作出如下频率分布直方图(图1).
(1)台风后居委会号召小区居民为台风重灾区捐款,记者调查的100户居民捐款情况如下表格,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(2)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为
,若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.

图1 图2
参考公式:
,其中





(1)台风后居委会号召小区居民为台风重灾区捐款,记者调查的100户居民捐款情况如下表格,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(2)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为






图1 图2
参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的
列联表:
(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为
,求
的分布列及数学期望.
附:
.

| 支持 | 不支持 | 合计 |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?
(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为


附:

![]() | 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图
如图所示
,规定80分及以上者晋级成功,否则晋级失败.
(I) 求图中a的值;
(II) 根据已知条件完成下面2´2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(III) 将频率视为概率,从本次考试的所有人员中,随机抽取3人进行约谈,记这3人中晋级失败的人数为X,求X的分布列与数学期望E(X).



(I) 求图中a的值;
(II) 根据已知条件完成下面2´2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(III) 将频率视为概率,从本次考试的所有人员中,随机抽取3人进行约谈,记这3人中晋级失败的人数为X,求X的分布列与数学期望E(X).
| 晋级成功 | 晋级失败 | 合计 |
男 | 16 | | |
女 | | | 50 |
合计 | | | |

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:
,其中
若学生
一天学习数学超过两个小时的概率为
(每天是相互独立没有影响的),一周内至少有四天每天学习数学超过两个小时,就说该生本周数学学习是投入的.
(Ⅰ)①设学生
本周一天学习数学超过两个小时的天数为
求
的分布列与数学期望
②求学生
本周数学学习投入的概率.
(Ⅱ)为了研究学生学习数学的投入程度和本周数学周练成绩的关系,随机在年级中抽取了
名学生进行调查,所得数据如下表所示:
根据上述数据能否有
的把握认为“学生学习数学的投入程度和本周数学成绩两事件有关”?
附:


(Ⅰ)①设学生




②求学生

(Ⅱ)为了研究学生学习数学的投入程度和本周数学周练成绩的关系,随机在年级中抽取了

| 成绩理想 | 成绩不太理想 | 合计 |
数学学习投入 | 20 | 10 | 30 |
数学学习不太投入 | 10 | 15 | 25 |
合计 | 30 | 25 | 55 |
根据上述数据能否有

附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | 10.828 |
某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的
列联表:

(1)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为
,求
的分布列和数学期望;
(2)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
附:



(1)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为


(2)根据表3中数据,能否认为爱好羽毛球运动与性别有关?
附:


为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
参考公式:
参考数据:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
参考公式:

参考数据:
![]() | 0.05 | 0.010 |
![]() | 3.841 | 6.635 |
某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:
| 同意 | 不同意 | 合计 |
男生 | a | 5 | |
女生 | 40 | d | |
合计 | | | 100 |
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:

![]() | 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了
人进行调查,其中女生中对足球运动有兴趣的占
,而男生有
人表示对足球运动没有兴趣.
(1)完成
列联表,并回答能否有
的把握认为“对足球是否有兴趣与性别有关”?
(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取
名学生,抽取
次,记被抽取的
名学生中对足球有兴趣的人数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望.
附:




(1)完成


| 有兴趣 | 没有兴趣 | 合计 |
男 | | | ![]() |
女 | | | |
合计 | | | |
(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取





附:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |

为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:
),经统计其增长长度均在区间
内,将其按
,
,
,
,
,
分成6组,制成频率分布直方图,如图所示其中增长长度为
及以上的产品为优质产品.
(Ⅰ)求图中
的值;
(Ⅱ)已知这120件产品来自于
,
两个试验区,部分数据如下列联表:
将联表补充完整,并判断是否有
的把握认为优质产品与
,
两个试验区有关系,并说明理由;
下面的临界值表仅供参考:
(参考公式:
,其中
)
(Ⅲ)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数
的分布列和数学期望
.









(Ⅰ)求图中

(Ⅱ)已知这120件产品来自于


| ![]() | ![]() | 合计 |
优质产品 | | 20 | |
非优质产品 | 60 | | |
合计 | | | |
将联表补充完整,并判断是否有



下面的临界值表仅供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


(Ⅲ)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数


