- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分12分)某中学校本课程共开设了
共
门选修课,每个学生必须且只能选修
门选修课,现有该校的甲、乙、丙
名学生.
(Ⅰ)求这
名学生选修课所有选法的总数;
(Ⅱ)求恰有
门选修课没有被这
名学生选择的概率;
(Ⅲ)求
选修课被这
名学生选择的人数
的分布列和数学期望.




(Ⅰ)求这

(Ⅱ)求恰有


(Ⅲ)求



(本题满分12分)为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).

(1)求样本容量
和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在
内的概率.









(1)求样本容量



(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在

(本小题满分12分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.

(1)根据直方图求
的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有
户月用电量超过300度,求
的分布列及期望.

(1)根据直方图求

(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有


(本小题满分12分)
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格。

(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。
(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;
(3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格。

(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。
(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;
(3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。
(本小题满分12分)在
年
月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“
分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取
名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).

(1)若幸福度不低于
分,则称该人的幸福度为“极幸福”,求从这
人中随机选取
人,至
多有
人是“极幸福”的概率;
(2)以这
人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选
人,记
表示抽到“极幸福”的人数,求
的分布列及数学期望.





(1)若幸福度不低于



多有

(2)以这



表示抽到“极幸福”的人数,求

(本小题满分13分)设集合
,从S的所有非空子集中,等可能地取出一个.
(1)设
,若
,则
,就称子集A满足性质
,求所取出的非空子集满足性质
的概率;
(2)所取出的非空子集的最大元素为
,求
的分布列和数学期望
.

(1)设





(2)所取出的非空子集的最大元素为



2014年5月,北京市提出地铁分段计价的相关意见,针对“你能接受的最高票价是多少?”这个问题,在某地铁站口随机对50人进行调查,调查数据的频率分布直方图及被调查者中35岁以下的人数与统计结果如下:


(Ⅰ)根据频率分布直方图,求a的值,并估计众数,说明此众数的实际意义;
(Ⅱ)从“能接受的最高票价”落在 [8,10),[10,12]的被调查者中各随机选取3人进行追踪调查,记选中的6人中35岁以上(含35岁)的人数为X,求随机变量X的分布列及数学期望.


(Ⅰ)根据频率分布直方图,求a的值,并估计众数,说明此众数的实际意义;
(Ⅱ)从“能接受的最高票价”落在 [8,10),[10,12]的被调查者中各随机选取3人进行追踪调查,记选中的6人中35岁以上(含35岁)的人数为X,求随机变量X的分布列及数学期望.
某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务).
(1)求5名大学生中恰有2名被分配到体操项目的概率;
(2)设
分别表示5名大学生分配到体操、游泳项目的人数,记
,求随机变量
的分布列和数学期望
(1)求5名大学生中恰有2名被分配到体操项目的概率;
(2)设




2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:
,
.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为
,写出
的分布列,并求其数学期望.


(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为

