题库 高中数学

题干

(本小题满分12分)在月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).

(1)若幸福度不低于分,则称该人的幸福度为“极幸福”,求从这人中随机选取人,至
多有人是“极幸福”的概率;
(2)以这人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选人,记
表示抽到“极幸福”的人数,求的分布列及数学期望.
上一题 下一题 0.99难度 解答题 更新时间:2015-03-24 05:19:46

答案(点此获取答案解析)

同类题2

实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

同类题4

为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中(单位:天)表示活动推出的天次,(单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图.
表1:
x
第1天
第2天
第3天
第4天
第5天
第6天
第7天
y
7
12
20
33
54
90
148
 

(1)由散点图分析后,可用作为该线路公交车在活动推广期使用扫码支付的人次关于活动推出天次的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).
表2:
 
 
 
 


4
52
3.5
140
2069
112
 
表中.
(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.
表3:
支付方式
现金
乘车卡
扫码
频率
10%
60%
30%
优惠方式
无优惠
按7折支付
随机优惠(见下面统计结果)
 
统计结果显示,扫码支付中享受5折支付的频率为,享受7折支付的频率为,享受9折支付的频率为.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求的分布列和期望.
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为参考数据:.