- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题共12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得
分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(Ⅰ)求
的值;
(Ⅱ)设
表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
.
甲,乙两人进行乒乓球比赛,约定每局胜者得






(Ⅰ)求

(Ⅱ)设



某老师从课本上抄录一个随机变量
的概率分布列如下表:

请甲同学计算
的数学期望,尽管“
”处完全无法看清,且两个“
”处字迹模糊,但能断定这两个“
”处的数值相同,据此,该同学给出了正确答案
.


请甲同学计算





(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构
为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600
人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方
图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.


(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(2)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中
随机抽取3人,记抽到“老年人”的人数为
,求随机变量
的分布列和数学期望.
为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600
人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方
图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.


(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(2)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中
随机抽取3人,记抽到“老年人”的人数为


(本小题满分12分)甲、乙两名射击运动员参加射击选拔训练,在相同的条件下,两人5次训练的成绩如下表(单位:环)
(1)请画出茎叶图,从稳定性考虑,选派谁更好呢?说明理由(不用计算)。若从甲、乙两人5次成绩中各随机抽取一次,求抽取的成绩至少有一个低于9.0环的概率;
(2)若从甲、乙两人5次成绩中各随机抽取二次,设抽到10.0环以上(包括10.0环)的次数为
,求随机变量
的分布列和期望;
次数 | 1 | 2 | 3 | 4 | 5 |
甲 | 6.5 | 10.2 | 10.5 | 8.6 | 6.8 |
乙 | 10.0 | 9.5 | 9.8 | 9.5 | 7.0 |
(1)请画出茎叶图,从稳定性考虑,选派谁更好呢?说明理由(不用计算)。若从甲、乙两人5次成绩中各随机抽取一次,求抽取的成绩至少有一个低于9.0环的概率;
(2)若从甲、乙两人5次成绩中各随机抽取二次,设抽到10.0环以上(包括10.0环)的次数为


4月10日,2015《中国汉字听写大会》全国巡回赛浙江赛区在杭州宣布正式启动,并拉开第三届“汉听大会”全国海选的帷幕.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示.

(Ⅰ)求频率分布直方图中
的值,试估计全市学生参加汉字听写考试的平均成绩;
(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上(含80分)的概率;
(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为
,求
的分布列及数学期望.
(注:频率可以视为相应的概率)

(Ⅰ)求频率分布直方图中

(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上(含80分)的概率;
(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为


(注:频率可以视为相应的概率)
(本小题满分12分)国家AAAAA级八里河风景区五一期间举办“管仲杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形
如图所示,其中阴影区域的边界曲线近似为函数
的图像).每队有3人“成功” 获一等奖,2人“成功” 获二等奖,1人“成功” 获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响).

(
)求某队员投掷一次“成功”的概率;
(
)设
为某队获奖等次,求随机变量
的分布列及其期望.



(

(



(本小题满分12分)我国对PM2.5采用如下标准:
某地4月1日至15日每天的PM2.5监测数据如茎叶图所示.

(Ⅰ)期间刘先生有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(Ⅱ)从所给15天的数据中任意抽取三天数据,记
表示抽到PM2.5监测数据超标的天数,求
的分布列及期望.
PM2.5日均值![]() | 空气质量等级 |
![]() | 一级 |
![]() | 二级 |
![]() | 超标 |
某地4月1日至15日每天的PM2.5监测数据如茎叶图所示.

(Ⅰ)期间刘先生有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(Ⅱ)从所给15天的数据中任意抽取三天数据,记

