(本小题满分16分)袋中有大小相同的三个球,编号分别为1,2,3.从袋中每次取出一个球,若取到的球的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到球的编号为奇数,则取球停止,取球停止后用X表示“所有被取球的编号之和”。 
(1)求X的概率分布;
(2)求X的数学期望及方差.
当前题号:1 | 题型:解答题 | 难度:0.99
是一个离散型随机变量,其分布列如下表:
ξ
-1
0
1
P
0.5


 
=   
当前题号:2 | 题型:填空题 | 难度:0.99
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是

(1)分别求出小球落入袋和袋中的概率;
(2)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
已知随机变量,且P,P,则P()= 
当前题号:4 | 题型:填空题 | 难度:0.99
甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是,规定有一方累计2胜或者累计2和时,棋局结束.棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军.设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=  
当前题号:6 | 题型:填空题 | 难度:0.99
某区要进行中学生篮球对抗赛,为争夺最后一个小组赛名额,甲、乙、丙三支篮球队要进行比赛,根据规则:每两支队伍之间都要比赛一场;每场比赛胜者得分,负者得分,没有平局,获得第一名的将夺得这个参赛名额.已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为
(Ⅰ)求甲队分别战胜乙队和丙队的概率
(Ⅱ)设在该次比赛中,甲队得分为,求的分布列及期望.
当前题号:7 | 题型:解答题 | 难度:0.99
为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:
乘坐里程(单位:



票价(单位:元)



 
现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,甲、乙乘车超过公里且不超过公里的概率分别为.
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
(本题满分12分)在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求依次成公差大于0的等差数列的概率;
(Ⅱ)求随机变量z的概率分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:

(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为.若每次抽取的结果是相互独立的,求的分布列和期望
 
高一
高二
合计
合格人数
 
 
 
不合格人数
 
 
 
合计
 
 
 
 
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系” .
当前题号:10 | 题型:解答题 | 难度:0.99