- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- + 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两选手比赛,假设每局比赛甲胜的概率是
,乙胜的概率是
,不会出现平局.
(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;
(2)如果采用五局三胜制
若甲、乙任何一方先胜3局,则比赛结束,结果为先胜3局者获胜
,求甲获胜的概率.


(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;
(2)如果采用五局三胜制


某商场经销某商品,顾客可以采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是
,经销
件该产品,若顾客采用一次性付款,商场获得利润
元;若顾客采用分期付款,商场获得利润
元.
(Ⅰ)求
位购买商品的顾客中至少有
位采用一次性付款的概率.
(Ⅱ)若
位顾客每人购买
件该商品,求商场获得利润不超过
元的概率.
(Ⅲ)若
位顾客每人购买
件该商品,设商场获得的利润为随机变量
,求
的分布列和数学期望.




(Ⅰ)求


(Ⅱ)若



(Ⅲ)若




甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为
,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量
,求随机变量
的分布列和数学期望
.

(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量



一名学生骑自行车上学,从他家到学校的途中有
个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是
.求:
(
)这名学生在途中遇到
次红灯次数的概率.
(
)这名学生在首次停车前经过了
个路口的概率.
(
)这名学生至少遇到一次红灯的概率.


(


(


(

在一次购物抽奖活动中,假设某
张奖券中有一等奖券
张,可获得价值
元的奖品,有二等奖券
张,每张可获得价值
元的奖品,其余
张没有奖,某顾客从此
张奖券中任抽
张,求
(1)该顾客中奖的概率;
(2)该顾客获得奖品总价值为
元的概率.








(1)该顾客中奖的概率;
(2)该顾客获得奖品总价值为

为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,
表示用电量为第二阶梯的户数,求
的概率分布列和数学期望.
阶梯级别 | 第一阶梯电量 | 第二阶梯电量 | 第三阶梯电量 |
月用电量范围(单位:![]() | ![]() | ![]() | ![]() |
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,


2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数
(单位:辆)均服从正态分布
,若
,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
某人向一目标射击4次,每次击中目标的概率为
,该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.
(1)设X表示目标被击中的次数,求X的分布列;
(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).

(1)设X表示目标被击中的次数,求X的分布列;
(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).