- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从甲口袋内摸出1个白球的概率是
,从乙口袋内摸出1个白球的概率是
,如果从两个口袋内各摸出一个球,那么
是 ( )



A.2个球不都是白球的概率 | B.2个球都不是白球的概率 |
C.2个球都是白球的概率 | D.2个球恰好有一个球是白球的概率 |
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入
袋或
袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
,则小球落入
袋中的概率为__________.





学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为
三个等级,其统计结果如下表:
由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为
的学生的概率为
.
(Ⅰ)求
,
的值;
(Ⅱ)从测试成绩均为
或
的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为
的学生的概率.

![]() 文字组织能力 | ![]() | ![]() | ![]() |
![]() | 2 | 2 | 0 |
![]() | 1 | ![]() | 1 |
![]() | 0 | 1 | ![]() |
由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为


(Ⅰ)求


(Ⅱ)从测试成绩均为



从装有十个红球和十个白球的罐子里任取2球,下列情况中互斥而不对立的两个事件是( )
A.至少有一个红球,至少有一个白球 |
B.恰有一个红球,都是白球 |
C.至少有一个红球,都是白球 |
D.至多有一个红球,都是红球 |
一个袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和小于15的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
第31届夏季奥林匹克运动会于2016年8月5日至21日在巴西里约热内卢举行,为了选拔某个项目的奥运会参赛队员,共举行5次达标测试,选手如果通过2次达标测试即可参加里约奥运会,不用参加其余的测试,而每个选手最多只能参加5次测试,假设某个选手每次通过测试的概率都是
,每次测试通过与是相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该选手能够参加本届奥运会的概率;
(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).

(1)求该选手能够参加本届奥运会的概率;
(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).
某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.
(1)求3个景区都有部门选择的概率;
(2)求恰有2个景区有部门选择的概率.
(1)求3个景区都有部门选择的概率;
(2)求恰有2个景区有部门选择的概率.