- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1.若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是________.
某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为
、
、
,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.



(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为
,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.

(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.
从1,2,3,4,5中有放回地依次取出两个数,则下列各对事件是互斥而不是对立事件的是( )
A.恰有1个是奇数和全是奇数 |
B.恰有1个是偶数和至少有1个是偶数 |
C.至少有1个是奇数和全是奇数 |
D.至少有1个是偶数和全是偶数 |
下列说法中正确的个数是 ( )
①事件
中至少有一个发生的概率一定比
中恰有一个发生的概率大;
②事件
同时发生的概率一定比
恰有一个发生的概率小;
③互斥事件一定是对立事件,对立事件并不一定是互斥事件;
④互斥事件不一定是对立事件,对立事件一定是互斥事件.
①事件


②事件


③互斥事件一定是对立事件,对立事件并不一定是互斥事件;
④互斥事件不一定是对立事件,对立事件一定是互斥事件.
A.0 | B.1 | C.2 | D.3 |
从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)( g )范围内的概率是 ( )
A.0.62 | B.0.38 | C.0.02 | D.0.68 |