刷题首页
题库
高中数学
题干
第31届夏季奥林匹克运动会于2016年8月5日至21日在巴西里约热内卢举行,为了选拔某个项目的奥运会参赛队员,共举行5次达标测试,选手如果通过2次达标测试即可参加里约奥运会,不用参加其余的测试,而每个选手最多只能参加5次测试,假设某个选手每次通过测试的概率都是
,每次测试通过与是相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该选手能够参加本届奥运会的概率;
(2)记该选手参加测试的次数为X,求随机变量X的分布列及数学期望E(X).
上一题
下一题
0.99难度 解答题 更新时间:2017-08-12 10:38:22
答案(点此获取答案解析)
同类题1
甲、乙两人各掷一个均匀的骰子,观察朝上的面的点数,记事件
A
:甲得到的点数为2,
B
:乙得到的点数为奇数.
(1)求
,
,
,判断事件
A
与
B
是否相互独立;
(2)求
.
同类题2
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为
X
,求
EX
.
同类题3
甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为
和
.
(1)求2个人都译出密码的概率;
(2)求2个人都译不出密码的概率;
(3)求至多1个人都译出密码的概率;
(4)求至少1个人都译出密码的概率.
同类题4
甲、乙两人独立地解决同一问题,甲解出此问题的概率是
,乙解出此问题的概率是
.求:
(1)甲、乙都解出此问题的概率;
(2)甲、乙都未解出此问题的概率;
(3)甲、乙恰有一人解出此问题的概率;
(4)至少有一人解出此问题的概率.
同类题5
某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,
方案一:每满200元减50元;
方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数
3
2
1
0
实际付款
半价
7折
8折
原价
(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;
(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?
相关知识点
计数原理与概率统计
概率
随机事件的概率
对立事件
利用对立事件的概率公式求概率
写出简单离散型随机变量分布列