- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经统计,某大型商场一个结算窗口每天排队结算的人数及相应的概率如下:
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?
排队人数 | 0﹣5 | 6﹣10 | 11﹣15 | 16﹣20 | 21﹣25 | 25人以上 |
概 率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为
,求甲至多命中2个且乙至少命中2个概率____.


一个口袋有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A=“恰有一个红球”,事件B=“第三个是红球”,求:
(1)不放回时,事件A,B的概率;
(2)每次抽后放回时,事件A,B的概率.
(1)不放回时,事件A,B的概率;
(2)每次抽后放回时,事件A,B的概率.
甲有一只放有a本《周易》,b本《万年历》,c本《吴从纪要》的书箱,且a+b+c ="6" (a,b,c
N),乙也有一只放有3本《周易》,2本《万年历》,1《吴从纪要》的书箱,两人各自从自己的箱子中任取一本书(由于每本书厚薄、大小相近,每本书被抽取出的可能性一样),规定:当两本书同名时甲将被派出去完成某项任务,否则乙去.
(1) 用a、b、c表示甲去的概率;
(2) 若又规定:当甲取《周易》,《万年历》,《吴从纪要》而去的得分分别为1分、2分、3分,否则得0分,求甲得分的期望的最大值及此时a、b、c的值.

(1) 用a、b、c表示甲去的概率;
(2) 若又规定:当甲取《周易》,《万年历》,《吴从纪要》而去的得分分别为1分、2分、3分,否则得0分,求甲得分的期望的最大值及此时a、b、c的值.
已知汕头市某学校高中部某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.
(Ⅰ)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;
(Ⅱ)若男学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,
表示抽取的5名学生中考前心理状态好的人数,求P(
=1)及E
.
(Ⅰ)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;
(Ⅱ)若男学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,



已知函数f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=lg(|x|+1),将它们分别写在六张卡片上,放在一个盒子中,
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的函数是奇函数的概率;
(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率.
(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的函数是奇函数的概率;
(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率.
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,现从袋中每次任取一球,每次取出不放回,连续取两次,问:
(1)取出的两只球都是白球的概率是多少;
(2)取出的两球至少有一个白球的概率是多少.
(1)取出的两只球都是白球的概率是多少;
(2)取出的两球至少有一个白球的概率是多少.
某地区年降水量(单位:mm)在下列范围内的概率如下表:
(1)如果降水量在
中,被认为是雨水适宜,有利于农作物生长,求该地区雨水适宜的概率;
(2)如果降水量不小于1200mm就可能发生洪涝灾害,这时需要采取防洪措施,求需要采取防洪措施的概率.
年降水量 | ![]() | ![]() | ![]() | ![]() | ![]() |
概率 | 0.12 | 0.26 | 0.38 | 0.16 | 0.08 |
(1)如果降水量在

(2)如果降水量不小于1200mm就可能发生洪涝灾害,这时需要采取防洪措施,求需要采取防洪措施的概率.