- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次诗词知识竞赛调查中,发现参赛选手分为两个年龄(单位:岁)段:
,
,其中答对诗词名句与否的人数如图所示.

(1)完成下面2×2列联表;
(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;
(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在
岁范围人数的分布列和数学期望.



(1)完成下面2×2列联表;
年龄段 | 正确 | 错误 | 合计 |
![]() | | | |
![]() | | | |
合计 | | | |
(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;
(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在

国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间(已知该校学生平均每天运动的时间范围是
),如下表所示.
男生平均每天运动的时间分布情况:

女生平均每天运动的时间分布情况:

(1)假设同组中的每个数据均可用该组区间的中间值代替,请根据样本估算该校男生平均每天运动的时间(结果精确到0.1).
(2)若规定平均每天运动的时间不少于
的学生为“运动达人”,低于
的学生为“非运动达人”.
(ⅰ)根据样本估算该校“运动达人”的数量;
(ⅱ)请根据上述表格中的统计数据填写下面
列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“运动达人”与性别有关.

参考公式:
,其中
.
参考数据:


男生平均每天运动的时间分布情况:

女生平均每天运动的时间分布情况:

(1)假设同组中的每个数据均可用该组区间的中间值代替,请根据样本估算该校男生平均每天运动的时间(结果精确到0.1).
(2)若规定平均每天运动的时间不少于


(ⅰ)根据样本估算该校“运动达人”的数量;
(ⅱ)请根据上述表格中的统计数据填写下面


参考公式:


参考数据:

进入高三,同学们的学习越来越紧张,学生休息和锻炼的时间也减少了.学校为了提高学生的学习效率,鼓励学生加强体育锻炼.某中学高三(3)班有学生50人.现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图.其中数据的分组区间为:

(1)求学生周平均体育锻炼时间的中位数(保留3位有效数字);
(2)从每周平均体育锻炼时间在
的学生中,随机抽取2人进行调查,求此2人的每周平均体育锻炼时间都超过2小时的概率;
(3)现全班学生中有40%是女生,其中3个女生的每周平均体育锻炼时间不超过4小时.若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?
附:


(1)求学生周平均体育锻炼时间的中位数(保留3位有效数字);
(2)从每周平均体育锻炼时间在

(3)现全班学生中有40%是女生,其中3个女生的每周平均体育锻炼时间不超过4小时.若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?
附:

P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
随机调查某校110名学生是否喜欢跳舞,由列联表和公式
计算出
,并由此作出结论:“有99%的可能性认为学生喜欢跳舞与性别有关”,则
可以为( )



![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
A.![]() | B.![]() | C.![]() | D.![]() |
随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了
名男生、
名女生进行为期一周的跟踪调查,调查结果如表所示:
(1)能否在犯错误的概率不超过
的前提下认为学生使用手机的时间长短与性别有关?
(2)在这
名女生中,调查小组发现共有
人使用国产手机,在这
人中,平均每天使用手机不超过
小时的共有
人.从平均每天使用手机超过
小时的女生中任意选取
人,求这
人中使用非国产手机的人数
的分布列和数学期望.
参考公式:



| 平均每天使用手机超过![]() | 平均每天使用手机不超过![]() | 合计 |
男生 | ![]() | ![]() | ![]() |
女生 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)能否在犯错误的概率不超过

(2)在这









![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


某学生对其30位亲属的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).

(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.
(2)根据以上数据完成如下2×2列联表.

(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?


(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.
(2)根据以上数据完成如下2×2列联表.

(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?

随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了
岁及以上不足
岁的网民共
人,调查结果如下:

(1)请完成上面的
列联表,并判断在犯错误的概率不超过
的前提下,能否认为网民对网络知识付费的态度与年龄有关?
(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取
名,若在上述
名网民中随机选
人,设这
人中反对态度的人数为随机变量
,求
的分布列和数学期望.
附:
,
.




(1)请完成上面的


(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取






附:


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
为了解男性家长和女性家长对高中学生成人礼仪式的接受程度,某中学团委以问卷形式调查了
位家长,得到如下统计表:
(1)据此样本,能否有
的把握认为“接受程度”与家长性别有关?说明理由;
(2)学校决定从男性家长中按分层抽样方法选出
人参加今年的高中学生成人礼仪式,并从中选
人交流发言,求发言人中至多一人持“赞成”态度的概率..
参考数据
参考公式

| 男性家长 | 女性家长 | 合计 |
赞成 | ![]() | ![]() | ![]() |
无所谓 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)据此样本,能否有

(2)学校决定从男性家长中按分层抽样方法选出


参考数据
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
参考公式

某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?


(参考公式:
,其中
)

(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(1)求图中

(2)根据已知条件完成下面



(参考公式:



(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为



由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了
两个地区的
名观众,得到如下的
列联表:

已知在被调查的
名观众中随机抽取
名,该观众是
地区当中“非常满意”的观众的概率为
,且
.
(1)现从
名观众中用分层抽样的方法抽取
名进行问卷调查,则应抽取“满意”的
地区的人数各是多少.
(2)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系.
(3)若以抽样调查的频率为概率,从
地区随机抽取
人,设抽到的观众“非常满意”的人数为
,求
的分布列和期望.
附:参考公式:




已知在被调查的





(1)现从



(2)完成上述表格,并根据表格判断是否有

(3)若以抽样调查的频率为概率,从




![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
附:参考公式:
