- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:
(1)求这50名学生本周使用手机的平均时间长;
(2)时间长为
的7名同学中,从中抽取两名,求其中恰有一个女生的概率;
(3)若时间长为
被认定“不依赖手机”,
被认定“依赖手机”,根据以上数据完成
列联表:
能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?
(参考公式:
,
)
时间长(小时) | ![]() | ![]() | ![]() | ![]() | ![]() |
女生人数 | 4 | 11 | 3 | 2 | 0 |
男生人数 | 3 | 17 | 6 | 3 | 1 |
(1)求这50名学生本周使用手机的平均时间长;
(2)时间长为

(3)若时间长为



| 不依赖手机 | 依赖手机 | 总计 |
女生 | | | |
男生 | | | |
总计 | | | |
能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育运动时间在
上的学生评价为“课外体育达标”.
请根据上述表格中的统计数据填写下面
列联表,并通过计算判断是否能在犯错误的概率不超过
的前提下认为“课外体育达标”与性别有关?
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:
,其中
.
参考数据:
将学生日均课外体育运动时间在

平均每天锻炼的时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
请根据上述表格中的统计数据填写下面


| 课外体育不达标 | 课外体育达标 | 合计 |
男 | | | |
女 | | 20 | 110 |
合计 | | | |
从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.
参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购。为拓展市场,某调研组对甲、乙两个品牌的共享单车在5个城市的用户人数进行统计,得到如下数据:
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以
表示选中的城市中用户人数超过5百万的个数,求随机变量
的分布列及数学期望
.
下面临界值表供参考:
参考公式: K2=
,n=a+b+c+d
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百万) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百万) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以



下面临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: K2=

据统计2018年春节期间微信红包收发总量达到460亿个.收发红包成了生活的“调味剂”.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下,对它们抢到的红包个数进行统计,得到如下数据:
(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出2种型号的手机进行大规模宣传销售.求型号Ⅰ或型号Ⅱ被选中的概率.
下面临界值表供参考:
参考公式:
型号 手机品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(个) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出2种型号的手机进行大规模宣传销售.求型号Ⅰ或型号Ⅱ被选中的概率.
下面临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:

空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2014年10月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中氧化物的日均浓度数据,制成散点图如图所示.

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;
(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.
参考数据:
(其中
).

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;
(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.
| 预测效果好 | 拟合效果不好 | 合计 |
数据有包含最值 | 5 | | |
数据无包含最值 | | 4 | |
合计 | | | |
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


某高中学校对全体学生进行体育达标测试,每人测试A、B两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A、B两个项目的测试成绩,得到A项目测试成绩的频率分布直方图和B项目测试成绩的频数分布表如下:


将学生的成绩划分为三个等级如右表:

(1)在抽取的100人中,求A项目等级为优秀的人数
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?

参考数据:
参考公式
其中
(3)将样本的率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率,


将学生的成绩划分为三个等级如右表:

(1)在抽取的100人中,求A项目等级为优秀的人数
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?

参考数据:
![]() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式


(3)将样本的率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率,
2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占
,在抽取的男性市民120人中持支持态度的为80人.

(Ⅰ)完成
列联表,并判断是否有
的把握认为性别与支持与否有关?
(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.
附:
.


(Ⅰ)完成


(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.
附:


为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为
)中,采用分层抽样的方法抽取
名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这
名同学的数据,按照以下区间分为八组:
①
,②
,③
,④
,⑤
,⑥
,⑦
,⑧
得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于
分的人数为
人.

(1)求
的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于
分”作为是否达标的标准,对抽取的
名学生,完成下列
列联表:

据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从该校的高二年级学生中随机抽取
人,记这
人中成绩不低于
分的学生人数为
,求
的分布列、数学期望和方差
附1:“
列联表
”的卡方统计量公式:
附2:卡方(
)统计量的概率分布表:



①








得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于



(1)求

(2)如果把“学生数学成绩不低于




据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从该校的高二年级学生中随机抽取





附1:“



附2:卡方(


某兴趣小组进行“野岛生存”实践活动,他们设置了
个取水敞口箱.其中
个采用
种取水法,
个采用
种取水法.如图甲为
种方法一个夜晚操作一次
个水箱积取淡水量频率分布直方图,图乙为
种方法一个夜晚操作一次
个水箱积取淡水量频率分布直方图.

(1)设两种取水方法互不影响,设
表示事件“
法取水箱水量不低于
,
法取水箱水量不低于
”,以样本估计总体,以频率分布直方图中的频率为概率,估计
的概率;
(2)填写下面
列联表,并判断是否有
的把握认为箱积水量与取水方法有关.
附:












(1)设两种取水方法互不影响,设






(2)填写下面


| 箱积水量![]() | 箱积水量![]() | 箱数总计 |
![]() | | | |
![]() | | | |
箱数总计 | | | |
附:



为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的
列联表,并判断是否有
的把握认为“阅读达人”跟性别有关?

附:参考公式
,其中
.
临界值表:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的



附:参考公式


临界值表:
