- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年来全国各一、二线城市打击投机购房,陆续出台了住房限购令.某市为了进一步了解已购房民众对市政府出台楼市限购令的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成楼市限购令的户数如下表:
若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”
(Ⅰ)求“非高收入户”在本次抽样调杳中的所占比例;
(Ⅱ)现从月收入在
的住户中随机抽取两户,求所抽取的两户都赞成楼市限购令的概率;
(Ⅲ)根据已知条件完成如图所给的
列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成楼市限购令”有关.
附:临界值表
参考公式:
,
.
人均月收入 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 10 | 13 | 11 | 8 | 2 |
赞成户数 | 5 | 9 | 12 | 9 | 4 | 1 |
若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”
| 非高收入户 | 高收入户 | 总计 |
赞成 | | | |
不赞成 | | | |
总计 | | | |
(Ⅰ)求“非高收入户”在本次抽样调杳中的所占比例;
(Ⅱ)现从月收入在

(Ⅲ)根据已知条件完成如图所给的

附:临界值表
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


随着我国经济的高速发展,很多城市空气污染较为严重,应当注重环境的治理,现随机抽取某市一年(365天)内100天的空气质量指数(
)的监测数据,统计结果如下表:
若本次抽取的样本数据有40天是在供暖季,这40天中有15天为严重污染.
(1)完成下面的
列联表:
(2)判断是否有
以上的把握认为该市本年度空气严重污染与供暖有关.
附:
,其中
.

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 5 | 15 | 18 | 22 | 15 | 25 |
若本次抽取的样本数据有40天是在供暖季,这40天中有15天为严重污染.
(1)完成下面的

| 非严重污染 | 严重污染 | 合计 |
供暖季 | | | |
非供暖季 | | | |
合计 | | | |
(2)判断是否有

附:


![]() | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:
(I)在参与调查的平均每天使用手机不超过3小时的7名女生中,有4人使用国产手机,从这7名女生中任意选取2人,求至少有1人使用国产手机的概率;
(II) 根据列联表,是否有90%的把握认为学生使用手机的时间长短与性别有关(
的观测值
精确到0.01).
附:
参考公式:

| 平均每天使用手机![]() | 平均每天使用手机![]() | 合计 |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合计 | 18 | 17 | 35 |
(I)在参与调查的平均每天使用手机不超过3小时的7名女生中,有4人使用国产手机,从这7名女生中任意选取2人,求至少有1人使用国产手机的概率;
(II) 根据列联表,是否有90%的把握认为学生使用手机的时间长短与性别有关(


附:
![]() | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 |
![]() | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:


某校初一年级全年级共有
名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为
万字.根据阅读量分组按分层抽样的方法从全年级
人中抽出
人来作进一步调查.

(1)在阅读量为
万到
万字的同学中有
人的成绩优秀,在阅量为
万到
万字的同学中有
人成绩不优秀,请完成下面的
列联表,并判断在“犯错误概率不超过
”的前提下,能否认为“学生成绩优秀与阅读量有相关关系”;
(2)在抽出的同学中,1)求抽到被污染部分的同学人数;2)从阅读量在
万到
万字及
万到
万字的同学中选出
人写出阅读的心得体会.求这
人中恰有
人来自阅读量是
万到
万的概率.
参考公式:
,其中
.
参考数据:





(1)在阅读量为








| 阅读量为![]() ![]() | 阅读量为![]() ![]() | 合计 |
成绩优秀的人数 | | | |
成绩不优秀的人数 | | | |
合计 | | | |
(2)在抽出的同学中,1)求抽到被污染部分的同学人数;2)从阅读量在









参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数
溶度,制定了空气质量标准:

某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中
的值;
(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如表:

根据限行前6年180天与限行后60天的数据,计算并填写
列联表,并回答是否有
的把握认为空气质量的优良与汽车尾气的排放有关.

参考数据:
参考公式:
,其中
.


某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中

(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如表:

根据限行前6年180天与限行后60天的数据,计算并填写



参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:


为了解心脑血管疾病是否与年龄有关,现随机抽取了50人进行调查,得到下列的列联表:
试问能否在犯错的概率不超过5%的前提下,认为患心脑血管疾病与年龄有关?
附表:
参考公式:
,其中
| 患心脑血管 | 不患心脑血管 | 合 计 |
大于45岁 | 22 | 8 | 30 |
小于45岁 | 8 | 12 | 20 |
合 计 | 30 | 20 | 50 |
试问能否在犯错的概率不超过5%的前提下,认为患心脑血管疾病与年龄有关?
附表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:


通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
经计算
的观测值
. 参照附表,得到的正确结论是
附表:

经计算


附表:

A.有99%以上的把握认为“爱好该项运动与性别有关” |
B.有99%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
2017年5月27日当今世界围棋排名第一的柯洁在与
的人机大战中中盘弃子认输,至此柯洁与
的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面
列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?
(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.



(1)请根据已知条件完成下面

| 非围棋迷 | 围棋迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.
2017年5月27日当今世界围棋排名第一的柯洁在与
的人机大战中中盘弃子认输,至此柯洁与
的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面
列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?
(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为
,若每次抽取的结果是相互独立的,求
的分布列,数学期望和方差.
独立性检查临界值表:
(参考公式:
,其中
)



(1)请根据已知条件完成下面

| 非围棋迷 | 围棋迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为


独立性检查临界值表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(参考公式:


在独立性检验中,统计量
有三个临界值:2.706、3.841和6.635,在一项打鼾与患心脏病的调查中,共调查了1000人,经计算的
=18.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )


A.有95%的把握认为两者无关 | B.约有95%的打鼾者患心脏病 |
C.有99%的把握认为两者有关 | D.约有99%的打鼾者患心脏病 |