- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计人数后,得到2×2列联表,则随机变量
的观测值为



A.0.600 | B.0.828 |
C.2.712 | D.6.004 |
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为
.



(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附:
禽流感是家禽养殖业的最大威胁,为检验某种药物预防禽流感的效果,取80只家禽进行对比试验,得到如下丢失数据的列联表:(表中
表示丢失的数据)
工作人员曾记得
(1)求出列联表中数据
的值;
(2)能否在犯错概率不超过0.005的前提下认为药物有效?
下面的临界值表供参考:
(参考公式:
,其中
)

| 患病 | 未患病 | 总计 |
未服用药 | 25 | 15 | 40 |
服用药 | ![]() | ![]() | 40 |
总计 | ![]() | ![]() | 80 |
工作人员曾记得

(1)求出列联表中数据

(2)能否在犯错概率不超过0.005的前提下认为药物有效?
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


近年来我国电子商务行业迎来篷勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达一千多亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)请完成如下列联表;

(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

(
,其中
)
(Ⅰ)请完成如下列联表;

(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

(


随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:
| 教师 | 家长 |
反对 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:

P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.
(Ⅰ)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2
(其中
))
性别 科目 | 男 | 女 |
文科 | 2 | 5 |
理科 | 10 | 3 |
(Ⅰ)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2


对“四地六校”的高二年段学生是爱好体育还是爱好文娱进行调查,共调查了40人,其中男生25人,女生15人;男生中有15人爱好体育,另外10人爱好文娱,女生中有5人爱好体育,另外10人爱好文娱;
(1)根据以上数据制作一个
的列联表;
(2)在多大的程度上可以认为性别与是否爱好体育有关系?
附:
参考数据:
(1)根据以上数据制作一个

(2)在多大的程度上可以认为性别与是否爱好体育有关系?
附:

![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 1.323 | 2.072 | 2. 706 | 3. 841 | 5. 024 |
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组
,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.

(Ⅰ)用样本估计总体,某班有学生45人,设
为达标人数,求
的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有
的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
.




(Ⅰ)用样本估计总体,某班有学生45人,设


性别是否达标 | 男 | 女 | 合计 |
达标 | ![]() | ![]() | |
不达标 | ![]() | ![]() | |
合计 | | | ![]() |
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
附:

为了判断两个分类变量X与Y之间是否有关系,应用独立性检验法算得
的观测值为6,附:临界值表如下:

则下列说法正确的是


则下列说法正确的是
A.有95%的把握认为X与Y有关系 | B.有99%的把握认为X与Y有关系 |
C.有99.5%的把握认为X与Y有关系 | D.有99.9%的把握认为X与Y有关系 |
某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如下表:根据表中数据得到
≈15.968,
因为
≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( )
附表:

因为

附表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
A.0.1 | B.0.05 | C.0.01 | D.0.001 |