- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某研究型学习小组调查研究”中学生使用智能手机对学习的影响”.部分统计数据如下表:

参考数据:

参考公式:
,其中
(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为
组,不使用智能手机且成绩优秀的8位同学记为
组,计划从
组推选的2人和
组推选的3人中,随机挑选两人在学校升旗仪式上作“国旗下讲话”分享学习经验.求挑选的两人恰好分别来自
、
两组的概率.

参考数据:

参考公式:


(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为






当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的
列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为
,
,
,若
,则此二人适合结为学习上互帮互助的“师徒”,记
为两人中解决此题的人数,若
,问两人是否适合结为“师徒”?
参考公式及数据:
,其中
.

(1)根据茎叶图中的数据完成下面的

| 及格(![]() | 不及格 | 合计 |
很少使用手机 | | | |
经常使用手机 | | | |
合计 | | | |
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为






参考公式及数据:


![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |
为了解人们对于国家新颁布的“全面放开二孩”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二孩”人数如下表:
由以上统计数据填下面2乘2列联表;
(2)是否有
的把握认为以45岁为分界点对“全面放开二孩”政策的支持度有差异.
参考数据:

年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二孩” | 4 | 5 | 12 | 8 | 2 | 1 |
由以上统计数据填下面2乘2列联表;
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 |
支持 | ![]() | ![]() | |
不支持 | ![]() | ![]() | |
合计 | | | |
(2)是否有

参考数据:


“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是
.
(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
| 男性 | 女性 | 合计 |
反感 | 10 | | |
不反感 | | 8 | |
合计 | | | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是

(1)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.