独立性检验中的统计假设就是假设两个研究对象Ⅰ和Ⅱ____ ____.
当前题号:1 | 题型:填空题 | 难度:0.99
某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序 号
1
2
3
4
5
6
7
8
9
10
身高x(厘米)
192
164
172
177
176
159
171
166
182
166
脚长y( 码 )
48
38
40
43
44
37
40
39
46
39
序 号
11
12
13
14
15
16
17
18
19
20
身高x(厘米)
169
178
167
174
168
179
165
170
162
170
脚长y( 码 )
43
41
40
43
40
44
38
42
39
41
 
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的联黑框列表:
 
高 个
非高个
合 计
大 脚
 
 
 
非大脚
 
12
 
合 计
 
 
20
 
(Ⅱ) 若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.
(Ⅲ) 根据题(1)中表格的数据,若按99.5%的可靠性要求,能否认为脚的大小与身高之间有关系?(可用数据482=2304、582=3364、682=4624、
当前题号:2 | 题型:解答题 | 难度:0.99
某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
 
认为作业多
认为作业不多
合计
喜欢玩游戏
18
9
 
不喜欢玩游戏
8
15
 
合计
 
 
 
 
(Ⅰ) 请完善上表中的所缺的有关数据;
(Ⅱ) 试通过计算说明能有多大的把握认为喜欢玩游戏与作业量的多少有关系?
当前题号:3 | 题型:解答题 | 难度:0.99
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
(1)根据以上数据建立一个2×2的列联表;
(2)试判断是否有95%的把握认为是否晕机与性别有关?
K2,其中na+b+c+d为样本容量.
PK2k0
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:4 | 题型:解答题 | 难度:0.99
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.

(1)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(2)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(3) 学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量,求随机变量的分布列期望.
当前题号:5 | 题型:解答题 | 难度:0.99
调查某养殖场某段时间内幼崽出生的时间与性别的关系,得到下面的数据表:
 
晚上
白天
雄性


雌性


 
从中可以得出幼崽出生的时间与性别有关系的把握有_________
当前题号:6 | 题型:填空题 | 难度:0.99
调查在2~3级风时的海上航行中男女乘客的晕船情况,共调查了71人,其中女性34人,男性37人.女性中有10人晕船,另外24人不晕船;男性中有12人晕船,另外25人不晕船.
判断晕船是否与性别有关系.
当前题号:7 | 题型:解答题 | 难度:0.99
某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.

(注:独立性检验临界值表参考第9题,K 2.)
当前题号:8 | 题型:填空题 | 难度:0.99
打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,
 
患心脏病
未患心脏病
合计
每一晚都打鼾
30
224
254
不打鼾
24
1355
1379
合计
54
1579
1633
 
根据独立性检验原理,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系.
提示
P(K2≥k)
0.100
0.050
0.010
 0.001
k
2.706
3.841
6.635
10.828
 
当前题号:9 | 题型:解答题 | 难度:0.99
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂:

乙厂:

(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填入答题卡的列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
当前题号:10 | 题型:解答题 | 难度:0.99