- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分12分)某中学一名数学老师对全班
名学生某次考试成绩分男女生进行了统计(满分
分),其中
分(含
分)以上为优秀,绘制了如下的两个频率分布直方图:

(Ⅰ)根据以上两个直方图完成下面的
列联表:

(Ⅱ)根据(Ⅰ)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

(Ⅲ)若从成绩在
的学生中任取
人,求取到的
人中至少有
名女生的概率.





(Ⅰ)根据以上两个直方图完成下面的


(Ⅱ)根据(Ⅰ)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

(Ⅲ)若从成绩在




某大学高等数学老师这学期分别用
两种不同的教学方式试验甲、乙两个大一班(人数均为60人,入学时的数学平均分数和优秀率都相同,勤奋程度和自觉性都一样),现随机抽取甲、乙两班各20名同学的高等数学期末考试成绩(单位:分),得到如下茎叶图:

(1)依茎叶图判断哪个班的平均分高(不需要计算);
(2)现从甲班高等数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(3)学校规定:成绩不低于85分为优秀,请填写下面的
列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关”(
的观测值
的计算结果小数点后保留三位有效数字)
注:参考数据与公式
,其中
,
临界值表:


(1)依茎叶图判断哪个班的平均分高(不需要计算);
(2)现从甲班高等数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(3)学校规定:成绩不低于85分为优秀,请填写下面的



| 甲班 | 乙班 | 总计 |
优秀 | | | |
不优秀 | | | |
总计 | | | |
注:参考数据与公式


临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
据统计,2016年“双十”天猫总成交金额突破1207亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
男性消费情况:
(1)计算
,
的值;在抽出的100名且消费金额在
(单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写
列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
附:
(
,其中
)
女性消费情况:
消费金额 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 5 | 10 | 15 | 47 | ![]() |
男性消费情况:
消费金额 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 2 | 3 | 10 | ![]() | 2 |
(1)计算



(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写

| 女性 | 男性 | 总计 |
网购达人 | | | |
非网购达人 | | | |
总计 | | | |
附:
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
(


为了解大学生观看浙江卫视综艺节目“奔跑吧兄弟”是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表:
若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“奔跑吧兄弟”的有6人.
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜欢看“奔跑吧兄弟”节目与性别有关?说明你的理由;
(3)已知喜欢看“奔跑吧兄弟”的10位男生中,
还喜欢看新闻,
还喜欢看动画片,
还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
(参考公式:
)
| 喜欢看“奔跑吧兄弟” | 不喜欢看“奔跑吧兄弟” | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“奔跑吧兄弟”的有6人.
(1)请将上面的列联表补充完整;
(2)是否有

(3)已知喜欢看“奔跑吧兄弟”的10位男生中,





下面的临界值表供参考:
P(χ2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

打鼾不仅影响别人休息,而且可能与患某种疾病有关.表是一次调查所得的数据.
(1)将本题的
联表格补充完整;
(2)甲提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示:
(1)将本题的

(2)甲提示的公式计算,每一晚都打鼾与患心脏病有关吗?
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
提示:

| 患心脏病 | 未患心脏病 | 合计 |
每一晚都打鼾 | 3 | 17 | ![]() |
不打鼾 | 2 | 128 | ![]() |
合计 | ![]() | ![]() | ![]() |
心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)
(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(2)经统计得,选择做立体几何题的学生正答率为
,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记抽取的两人中答对的人数为
,求
的分布列及数学期望.
附表及公式:

| 立体几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(2)经统计得,选择做立体几何题的学生正答率为



附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如下图所示,并得到适龄民众对放开生育二胎政策的态度数据如下表:
(1)填写上面的
列联表;
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
(参考公式:
,其中
)
| 生二胎 | 不生二胎 | 合计 |
25~35岁 | | 10 | |
35~50岁 | 30 | | |
合计 | | | 100 |
(1)填写上面的

(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 |
(参考公式:


2016年1月1日起全国统一实施全面的两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100人并对调查结果进行统计,70后不打算生二胎的占全部调查人数的
,80后打算生二胎的占全部被调查人数的
,100人中共有75人打算生二胎.
(1)根据调查数据,判断是否有
以上把握认为“生二胎与年龄有关”,并说明理由;
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为
,求随机变量
的分布列,数学期望
和方差
.
参考公式:
(
,其中
)


(1)根据调查数据,判断是否有

(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为




参考公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(


某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下
列联表:
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为
.
(Ⅰ)请将上述列联表补充完整,并判断是否有
的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:
,其中
.
参考数据:

| 喜欢游泳 | 不喜欢游泳 | 合计 |
男生 | | 10 | |
女生 | 20 | | |
合计 | | | |
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整,并判断是否有

(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:


参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
下面临界值表:
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量
,求
的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
休闲方式 性别 | 看电视 | 看书 | 合计 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合计 | 40 | 120 | 160 |
下面临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量


(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?