某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

 
网购达人
非网购达人
合计
男性
 
 
30
女性
12
 
30
合计
 
 
60
 
若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式:,其中
P()
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:1 | 题型:解答题 | 难度:0.99
有甲、乙两个班进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:(单位:人).

已知在全部105人中随机抽取1人成绩是优秀的概率为.
(1)请完成上面的列联表,并根据表中数据判断,是否有的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为,求的分布列与期望.
附:

0.15
0.10
0.050
0.010

2.072
2.706
3.841
6.635
 
当前题号:2 | 题型:解答题 | 难度:0.99
随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查人,并将调查情况进行整理后制成下表:
年龄(岁)





频数





赞成人数





 
(1)世界联合国卫生组织规定:岁为青年,为中年,根据以上统计数据填写以下列联表:
 
青年人
中年人
合计
不赞成
 
 
 
赞成
 
 
 
合计
 
 
 
 
(2)判断能否在犯错误的概率不超过的前提下,认为赞成“车柄限行”与年龄有关?
附:,其中
独立检验临界值表:










 
(3)若从年龄的被调查中各随机选取人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为,求随机变量的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
随机调查某社区80个人,以研究这一社区居民在17:00—21:00时间段的休闲方式是否与性别有关,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求的分布列和期望;
(2)根据以上数据,能否有99%的把握认为在17:00—21:00时间段的休闲方式与性别有关系?
当前题号:4 | 题型:解答题 | 难度:0.99