刷题首页
题库
高中数学
题干
衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视
看书
合计
男
20
100
120
女
20
20
40
合计
40
120
160
下面临界值表:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量
,求
的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
上一题
下一题
0.99难度 解答题 更新时间:2017-03-15 03:48:46
答案(点此获取答案解析)
同类题1
为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1 000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.
(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:
合格品数/件
次品数/件
总数/件
甲在现场
990
甲不在现场
10
总数/件
(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?
P
(
K
2
≥
k
)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
K
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题2
某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:
甲类
乙类
男性居民
3
15
女性居民
6
6
(Ⅰ)根据上表中的统计数据,完成下面的
列联表;
男性居民
女性居民
总计
不参加体育锻炼
参加体育锻炼
总计
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:
,其中
.
0.10
0.05
0.01
2.706
3.841
6.635
同类题3
一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
女性
金额
频数
20
40
80
50
10
男性
金额
频数
45
75
90
60
30
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成
列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
高收入人群
非高收入人群
合计
女性
60
男性
180
合计
500
参考公式:
,其中
参考附表:
0.10
0.050
0.010
0.001
2.706
3.841
6.635
10.828
同类题4
某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:
每年体检
每年未体检
合计
老年人
7
年轻人
6
合计
50
已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( )
A.
B.
C.
D.
同类题5
在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生
表二:女生
(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下面的
列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考公式:
,其中
.
参考数据:
0.10
0.05
0.01
2.706
3.841
6.635
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
二项分布