- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列
列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考数据及公式:
.

(1)根据条件完成下列

| 愿意 | 不愿意 | 总计 |
男生 | | | |
女生 | | | |
总计 | | | |
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考数据及公式:
![]() | 0.1 | 0.05 | 0.025 | 0.01 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |

某次考试中,语文成绩服从正态分布
,数学成绩的频率分布直方图如下:

(Ⅰ)如果成绩大于135的为特别优秀,随机抽取的500名学生在本次考试中语文、数学成绩特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中至少有一科成绩特别优秀的同学中随机抽取3人,设3人中两科都特别优秀的有
人,求
的分布列和数学期望;
(Ⅲ)根据以上数据,是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
(附公及表)
①若
,则
,
;
②
,
;
③


(Ⅰ)如果成绩大于135的为特别优秀,随机抽取的500名学生在本次考试中语文、数学成绩特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中至少有一科成绩特别优秀的同学中随机抽取3人,设3人中两科都特别优秀的有


(Ⅲ)根据以上数据,是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
(附公及表)
①若



②


③

某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下
列联表:

(1)能否在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.
下列的临界值表供参考:

(参考公式:
,其中
)


(1)能否在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.
下列的临界值表供参考:

(参考公式:


利用独立性检验来考虑两个分类变量
和
是否有关系时,如果
的观测值
,那么在犯错误的概率不超过__________ 的前提下认为“
和
有关系”.






![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:
(1)计算表中的
、
、
值;是否有99%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据:
=
| 高血压 | 非高血压 | 总计 |
年龄20到39岁 | 12 | ![]() | 100 |
年龄40到60岁 | ![]() | 52 | 100 |
总计 | 60 | ![]() | 200 |
(1)计算表中的



(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据:


P(k2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量
,求
的分布列(概率用算式表示)、数学期望和方差.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;

(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量



高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:
已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为喜欢中国古典文学与性别有关?请说明理由;
(3)已知在喜欢中国古典文学的10位男生中,
,
,
还喜欢数学,
,
还喜欢绘画,
,
还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
参考公式及数据:
,其中
.
| 喜欢中国古典文学 | 不喜欢中国古典文学 | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为

(1)请将上面的列联表补充完整;
(2)是否有

(3)已知在喜欢中国古典文学的10位男生中,









参考公式及数据:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的
列联表:

附:
根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?( )


附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?( )
A.99%以上 | B.97.5%以上 | C.95%以上 | D.85%以上 |
为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.

(1)完成下面
列联表,并判断是否有
的把握认为“空间想象能力突出”与性别有关;
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为
,求随机变量
的分布列和数学期望.
下面公式及临界值表仅供参考:

(1)完成下面


| 空间想象能力突出 | 空间想象能力正常 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为


下面公式及临界值表仅供参考:

![]() | 0.100 | 0.050 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |
某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图1)和女生身高情况的频率分布直方图(图2).已知图1中身高在170~175cm的男生人数有16人.

(1)根据频率分布直方图,完成下列的
列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(2)在上述80名学生中,从身高在170-175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:
参考数据:

(1)根据频率分布直方图,完成下列的

| ![]() | ![]() | 总计 |
男生身高 | | | |
女神身高 | | | |
总计 | | | |
(2)在上述80名学生中,从身高在170-175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:

参考数据:
![]() | 0.025 | 0.610 | 0.005 | 0.001 |
![]() | 5.024 | 4.635 | 7.879 | 10.828 |