- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.
(1)根据以上数据完成2×2列联表;
(2)判断性别与喜欢运动是否有关,并说明理由;
(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.
附:K2=
,
(1)根据以上数据完成2×2列联表;
| 喜欢运动 | 不喜欢运动 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
(2)判断性别与喜欢运动是否有关,并说明理由;
(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.
附:K2=

P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
某科研机构为了研究中年人秃发与患心脏病是否有关,随机调查了一些中年人的情况,具体数据如表,根据表中数据则可判定秃发与患心脏病有关,那么这种判定出错的可能性为( )
患心脏病情况 秃发情况 | 患心脏病 | 无心脏病 |
秃发 | 20 | 300 |
不秃发 | 5 | 450 |
A.0.1 | B.0.05 |
C.0.01 | D.0.99 |
有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
已知在全部105人中随机抽取1人,成绩优秀的概率为
,则下列说法正确的是( )
参考公式:
附表:
| 优秀 | 非优秀 | 总计 |
甲班 | 10 | b | |
乙班 | c | 30 | |
总计105 | | | |
已知在全部105人中随机抽取1人,成绩优秀的概率为

参考公式:

附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A.列联表中c的值为30,b的值为35 |
B.列联表中c的值为15,b的值为50 |
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系” |
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” |
冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如表所示:
根据以上数据,试判断是否有99.9%的把握认为含杂质的高低与设备改造有关系.
| 杂质高 | 杂质低 |
旧设备 | 37 | 121 |
新设备 | 22 | 202 |
根据以上数据,试判断是否有99.9%的把握认为含杂质的高低与设备改造有关系.
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
在调查男女学生购买食品时是否阅读营养成分说明时,调查了36位男生、38位女生,而且阅读营养成分的人有46人,阅读营养成分的人中有28位女生,用2×2列联表表示上述数据.
为考察某种疫苗预防疾病的效果,进行动物试验,得到统计数据如下表,现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为
.

(1)求2×2列联表中的数据x,y,A,B的值.
(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?
(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效?
附:
,其中n=a+b+c+d.临界值表:

| 未发病 | 发病 | 总计 |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
总计 | 50 | 50 | 100 |

(1)求2×2列联表中的数据x,y,A,B的值.
(2)绘制发病率的条形统计图,并判断疫苗是否影响到了发病率?
(3)能否在犯错误的概率不超过0.001的前提下认为疫苗有效?
附:

P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
为了探究成年人晕车与性别是否有关,调查了320名成年人,其中男士152人,而且男士与女士中,晕车的分别有28人与32人.用2×2列联表示这些数据.
利用独立性检验的方法调查是否爱好某项运动与高中生性别有关,通过随机调查某市
名高中生是否爱好该项运动,利用
列联表,计算得
的观测值
,参照下表:
可得到的正确结论是




![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
可得到的正确结论是
A.有![]() |
B.有![]() |
C.在犯错误的概率不超过![]() |
D.在犯错误的概率不超过![]() |
通过随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表:
附表:
随机变量
.经计算,
的观测值k≈4.762,参考附表,得到的正确结论是( )
| 男 | 女 | 总计 |
爱好 | 10 | 40 | 50 |
不爱好 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
附表:
P(![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |
随机变量


A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” |
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” |
C.有97.5%以上的把握认为“爱好该项运动与性别有关” |
D.有97.5%以上的把握认为“爱好该项运动与性别无关” |