- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班主任对全班30名男生进行了作业量多少的调查,数据如下表:
该班主任据此推断男生认为作业多与喜欢玩电脑游戏有关系,则这种推断犯错误的概率不超过________.
附表及公式:
参考公式:K2=
.
| 认为作业多 | 认为作业不多 | 总计 |
喜欢玩电脑游戏 | 12 | 8 | 20 |
不喜欢玩电脑游戏 | 2 | 8 | 10 |
总计 | 14 | 16 | 30 |
该班主任据此推断男生认为作业多与喜欢玩电脑游戏有关系,则这种推断犯错误的概率不超过________.
附表及公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2=

利用独立性检验考察两个分类变量X与Y是否有关系时,若K2的观测值k=6.132,则有__________ 的把握认为“X与Y有关系”.
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 |
为考察高中生的性别与是否喜欢数学课程之间的关系,从某高中随机抽取300名学生,得到如下列联表:
根据以上数据,则( )
| 喜欢数学课程 | 不喜欢数学课程 |
男 | 37 | 85 |
女 | 35 | 143 |
根据以上数据,则( )
A.性别与是否喜欢数学无关 |
B.有95%的把握认为性别与是否喜欢数学有关 |
C.性别与是否喜欢数学关系不确定 |
D.以上说法都错误 |
2016年9月20日是第28个全国爱牙日,为了迎接此节日,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级800名学生进行检查,按患龋齿和不换龋齿分类,并汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.
(1)能否在犯错误的概率不超过0.001的前提下,认为该地区学生常吃零食与患龋齿有关系?
(2)4名卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到收集数据组,工作人员乙分到处理数据组的概率.
附:
,其中n=a+b+c+d
(1)能否在犯错误的概率不超过0.001的前提下,认为该地区学生常吃零食与患龋齿有关系?
(2)4名卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到收集数据组,工作人员乙分到处理数据组的概率.
附:

P(![]() | 0.010 | 0.05 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
为了探究患慢性气管炎与吸烟有无关系,调查了339名50岁以上的人,结果如下表所示,请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?
| 患慢性气管炎 | 未患慢性气管炎 | 合计 |
吸烟 | 43 | 162 | 205 |
不吸烟 | 13 | 121 | 134 |
合计 | 56 | 283 | 339 |
(2018届广东省江门市高三3月模拟(一模))为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为“成绩优良”。

(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(附:
,其中
是样本容量)
独立性检验临界值表:

(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(附:


独立性检验临界值表:

某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为
类同学),另外250名同学不经常参加体育锻炼(称为
类同学),现用分层抽样方法(按
类、
类分两层)从该年级的学生中共抽取100名同学,如果以身高达
作为达标的标准,对抽取的100名学生,得到以下列联表:
(Ⅰ)完成上表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(
的观测值精确到0.001)?
参考公式:
,其中
.
临界值表:





| 身高达标 | 身高不达标 | 总计 |
经常参加体育锻炼 | 40 | | |
不经常参加体育锻炼 | | 15 | |
总计 | | | 100 |
(Ⅰ)完成上表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(

参考公式:


临界值表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
2018年2月22日,在平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时),又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.
,请画出频率分布直方图;
(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30个小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20个小时的男生有50人,请完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生观看冬奥会的累计时间与性别有关”?
参考数据:
参考公式:
.

(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30个小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20个小时的男生有50人,请完成下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生观看冬奥会的累计时间与性别有关”?
| 男生 | 女生 | 总计 |
累计观看时间小于20小时 | | | |
累计观看时间不小于20小时 | | | |
总计 | | | |
参考数据:
![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
参考公式:

对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:
试根据上述数据计算K2≈________,能否作出这两种手术对病人又发作心脏病的影响有差别的结论________(填“能”或“不能”).
| 又发作过心脏病 | 未发作过心脏病 | 合计 |
心脏搭桥手术 | 39 | 157 | 196 |
血管清障手术 | 29 | 167 | 196 |
合计 | 68 | 324 | 392 |
试根据上述数据计算K2≈________,能否作出这两种手术对病人又发作心脏病的影响有差别的结论________(填“能”或“不能”).
某中学共有
名学生,为调查该校学生每周平均参加体育运动的时间,按性别采用分层抽样的方法,收集了
名学生每周平均参加体育运动的时间(单位:小时),分组如下:
,
,
,
,
,
,得到的频率分布直方图如图所示:

(Ⅰ)已知这
名学生中,有
的女生每周平均参加体育运动的时间不足
小时,且每周平均参加体育运动的时间不足
小时的男生人数与女生人数之比为
.请将下面的
列联表补充完整,并判断是否有
的把握认为“该校学生每周平均参加体育运动的时间与性别有关”;
(Ⅱ)该校决定从每周平均参加体育运动的时间在
和
内的学生中,采用分层抽样的方法抽取
名学生进行问卷调查,然后再从这
名学生中随机抽取
名学生进行面谈,用
表示抽取的
名学生中每周平均参加体育运动的时间在
内的学生人数,求随机变量
的分布列和数学期望.
参考公式及数据:
,
.









(Ⅰ)已知这







| 男生 | 女生 | 合计 |
每周平均参加体育运动的时间不足![]() | | | |
每周平均参加体育运动的时间不低于![]() | | | |
合计 | | | |
(Ⅱ)该校决定从每周平均参加体育运动的时间在









参考公式及数据:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |