- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,
还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
(参考公式:
)
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,





下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.
根据表中数据,得到k=
≈4.844.
则认为选修文科与性别有关系出错的可能性为________.
| 理科 | 文科 |
男 | 13 | 10 |
女 | 7 | 20 |
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.
根据表中数据,得到k=

则认为选修文科与性别有关系出错的可能性为________.
经过对
的统计量的研究,得到了若干个临界值,当
时,我们认为事件A与B( )


A.有95%的把握认为A与B有关系 | B.有99%的把握认为A与B有关系 |
C.没有充分理由认为A与B有关系 | D.不能确定 |
某医疗研究所为了了解某种血清预防感冒的作用,把500名使用过该血清的人与另外500名未使用该血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”.已知利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列结论中,正确结论的序号是________.
①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.
①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.
为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了50人,得到如下结果(单位:人)
附:
,
根据表中数据,你认为吸烟与患肺癌有关的把握有( )
| 不患肺癌 | 患肺癌 | 合计 |
不吸烟 | 24 | 6 | 30 |
吸烟 | 6 | 14 | 20 |
合计 | 30 | 20 | 50 |
附:

P(K2≥k0) | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
根据表中数据,你认为吸烟与患肺癌有关的把握有( )
A.![]() | B.![]() | C.![]() | D.![]() |
某商场为了了解毛衣的月销售量
(件)与月平均气温
之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
由表中数据算出线性回归方程
中的
≈
,气象部门预测下个月的平均气温约为
,据此估计该商场下个月毛衣销售量约为________________件.


月平均气温![]() | 17 | 13 | 8 | 2 |
月销售量![]() | 24 | 33 | 40 | 55 |
由表中数据算出线性回归方程




车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,数据如下:
设回归方程为
,则点
在直线
的( )
零件数![]() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
加工时间![]() | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 |
设回归方程为



A.左上方 | B.右上方 | C.左下方 | D.右下方 |
在一次“研究性学习”中,三班第一组的学生对人们的休闲方式的进行了一次随机调查,数据如下:
性别 休闲方式 | 看电视 | 运动 |
女 | 15 | 10 |
男 | 5 | 20 |
试判断性别与休闲方式是否有关系?作为这个判断出错的可能性有多大?
在吸烟与患肺癌这两个分类变量的计算中,下列说法正确的是
①若
的观测值满足
,我们有99%的把握认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌;(参考数据:
)
②从独立性检验可知,如果有99%的把握认为吸烟与患肺癌有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺癌;
③从统计量中得知有95%的把握认为吸烟与患肺癌有关系时,是指有5%的可能性使推断出现错误.
①若



②从独立性检验可知,如果有99%的把握认为吸烟与患肺癌有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺癌;
③从统计量中得知有95%的把握认为吸烟与患肺癌有关系时,是指有5%的可能性使推断出现错误.
A.① | B.①③ | C.③ | D.② |