- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了 105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀,甲校:

乙校:

(I )计算x,y的值;
(II)由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5% 的把握认为两个学校的数学成绩有差异.
(III)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望;
附:


乙校:

(I )计算x,y的值;
(II)由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5% 的把握认为两个学校的数学成绩有差异.
(III)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望;
附:


经过对
的统计量的研究,得到了若干个临界值,当
的观测值
时,我们( )



![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.在错误的概率不超过0.05的前提下可认为A与B有关 |
B.在错误的概率不超过0.05的前提下可认为A与B无关 |
C.在错误的概率不超过0.01的前提下可认为A与B有关 |
D.没有充分理由说明事件A与B有关 |
为了调查患慢性气管炎是否与吸烟有关,调查了100名50岁以下的人,调查结果如下表:
根据列联表数据,求得K2= (保留3位有效数字),根据下表,
有 的把握(填写相应的百分比)认为患慢性气管炎与吸烟有关.

| 患慢性气管炎 | 未患慢性气管炎 | 合计 |
吸烟 | 20 | 20 | 40 |
不吸烟 | 5 | 55 | 60 |
合计 | 25 | 75 | 100 |
根据列联表数据,求得K2= (保留3位有效数字),根据下表,
有 的把握(填写相应的百分比)认为患慢性气管炎与吸烟有关.
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为
,求
的分布列和数学期望;
(II)根据频率分布直方图填写下面
列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关.
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为


(II)根据频率分布直方图填写下面


哈尔滨冰雪大世界每年冬天都会吸引大批游客,现准备在景区内开设经营热饮等食品的店铺若干.根据以往对500名40岁以下(含40岁)人员和500名40岁以上人员的统计调查,有如下一系列数据:40岁以下(含40岁)人员购买热饮等食品的有260人,不购买热饮食品的有240人;40岁以上人员购买热饮等食品的有220人,不购买热饮等食品的有280人,请根据以上数据作出2

注:要求达到99. 9%的把握才能认定为有关系.

为防止某种疾病,今研制一种新的预防药.任选取100只小白鼠作试验,得到如下的列联表:
,则在犯错误的概率不超过( )的前提下认为“药物对防止某种疾病有效”.
参考数据:
| 患病 | 未患病 | 总计 |
服用药 | 15 | 40 | 55 |
没服用药 | 20 | 25 | 45 |
总计 | 35 | 65 | 100 |

参考数据:
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.0.025 | B.0.10 | C.0.01 | D.0.005 |
利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.
如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为( )
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为( )
A.25% | B.75% | C.2.5% | D.97.5% |