- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下
列联表:

(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.
附:
参考数据:



(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.
附:

参考数据:

某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下
列联表:

(1)根据列联表,能否有
的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从40岁以上的被调查者中用分层抽样的方式抽取了10名,现从这10名被调查者中随机选取3名,记这3名被选出的被调查者中对手机游戏很有兴趣的人数为
,求
的分布列及数学期望.
附:
参考数据:



(1)根据列联表,能否有

(2)若已经从40岁以上的被调查者中用分层抽样的方式抽取了10名,现从这10名被调查者中随机选取3名,记这3名被选出的被调查者中对手机游戏很有兴趣的人数为


附:

参考数据:

以下四个命题中:①在回归分析中,可用相关系数r的值判断模型的拟合效果,|r|越大,模拟的拟合效果越好;②在一组样本数据
不全相等)的散点图中,若所有样本点
都在直线
上,则这组样本数据的线性相关系数为
;③对分类变量x与y的随机变量
来说,
越小,判断“x与y有关系”的把握程度越大.其中真命题的个数为__________ .






为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500
以上为常喝,体重超过50
为肥胖.
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有
的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
(参考公式:
,其中
)


| 常喝 | 不常喝 | 合计 |
肥胖 | | 2 | |
不肥胖 | | 18 | |
合计 | | | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;
(2)是否有

(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


微信作为一款社交软件已经在支付、理财、交通、运动等各方面给人们的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.
先生朋友圈里有大量好友使用了“微信运动”这项功能,他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:
(1)以样本估计总体,视样本频率为概率,在
先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有
名,求
的分布列和数学期望;
(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?
附:
,其中

步数 性别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男 | 3 | 4 | 5 | 4 | 3 | 1 |
女 | 3 | 5 | 3 | 2 | 5 | 2 |
(1)以样本估计总体,视样本频率为概率,在



(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?
| 运动达人 | 运动懒人 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
附:


![]() | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各
户贫困户.为了做到精准帮扶,工作组对这
户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标
.将指标
按照
,
,
,
,
分成五组,得到如图所示的频率分布直方图.规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当
时,认定该户为“低收入户”;当
时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的
.

(1)完成下面的列联表,并判断是否有
的把握认为绝对贫困户数与村落有关:
(2)某干部决定在这两村贫困指标处于
的贫困户中,随机选取
户进行帮扶,用
表示所选
户中“亟待帮助户”的户数,求
的分布列和数学期望
.
附:
,其中
.














(1)完成下面的列联表,并判断是否有

| 甲村 | 乙村 | 总计 |
绝对贫困户 | | | |
相对贫困户 | | | |
总计 | | | |
(2)某干部决定在这两村贫困指标处于






附:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(1)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据:
,其中n=a+b+c+d.
(1)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据:


一只红玲虫的产卵数
和温度
有关.现收集了7组观测数据如下表:
为了预报一只红玲虫在
时的产卵数,根据表中的数据建立了
与
的两个回归模型.模型①:先建立
与
的指数回归方程
,然后通过对数变换
,把指数关系变为
与
的线性回归方程:
;模型②:先建立
与
的二次回归方程
,然后通过变换
,把二次关系变为
与
的线性回归方程:
.
(1)分别利用这两个模型,求一只红玲虫在
时产卵数的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和
,模型①的相关指数
;模型②的残差平方和
,模型②的相关指数
;
,
,
;
,
,
,
,
,
,
)


温度![]() | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数![]() | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
为了预报一只红玲虫在

















(1)分别利用这两个模型,求一只红玲虫在

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和














在“创文创卫”活动中,某机构为了解一小区成年居民“吸烟与性别”是否有关.从该小区中随机抽取200位成年居民,得到下边列联表:已知在全部200人中随机抽取1人,抽到不吸烟的概率为0.75.
(1)补充上面的列联表,并判断:能否有99.9%的把握认为“吸烟与性别”有关;
(2)用分层抽样的方法从吸烟居民中选5人出来,然后再从中抽2人出来,给小区居民谈谈吸烟的危害性,求恰好抽到“一男一女”的概率.
参考公式:
.
参考数据:
| 吸烟 | 不吸烟 | 合计 |
男 | 40 | | |
女 | | 90 | |
合计 | | | 200 |
(1)补充上面的列联表,并判断:能否有99.9%的把握认为“吸烟与性别”有关;
(2)用分层抽样的方法从吸烟居民中选5人出来,然后再从中抽2人出来,给小区居民谈谈吸烟的危害性,求恰好抽到“一男一女”的概率.
参考公式:

参考数据:
![]() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记
为参加交流会的5人中喜欢古典文学的人数,求
的分布列及数学期望
.
附:
,其中
.
参考数据:
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记



附:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |