- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在西非“埃博拉病毒"的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
附:
根据上表,有________的把握认为“小动物是否感染与服用疫苗有关”.
| 感染 | 未感染 | 合计 |
服用 | 10 | 40 | 50 |
未服用 | 20 | 30 | 50 |
合计 | 30 | 70 | 100 |
附:

![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
根据上表,有________的把握认为“小动物是否感染与服用疫苗有关”.
某市环保部门对该市市民进行了一次动物保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参'与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得
列联表如下:
(1)请判断能否在犯错误的概率不超过0.05的前提下认为“动物保护关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女“动物保护达人”的概率.
附表及公式:
,其中
.
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得

| 非“动物保护关注者” | 是“动物保护关注者” | 合计 |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合计 | 25 | 75 | 100 |
(1)请判断能否在犯错误的概率不超过0.05的前提下认为“动物保护关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女“动物保护达人”的概率.
附表及公式:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
汽车尾气中含有一氧化碳(
),碳氢化合物(
)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:

(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为
,问是否有
的把握认为“对机动车强制报废标准是否了解与性别有关”?
(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中
浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中
浓度
与使用年限
线性相关,试确定
关于
的回归方程,并预测该型号的汽车使用12年排放尾气中的
浓度是使用4年的多少倍.
附:
(
)
参考公式:用最小二乘法求线性回归方程系数公式:
,
.


| 不了解 | 了解 | 总计 |
女性 | ![]() | ![]() | 50 |
男性 | 15 | 35 | 50 |
总计 | ![]() | ![]() | 100 |

(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为


(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中







附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:用最小二乘法求线性回归方程系数公式:


某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在
的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的
列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
(3)在上述100名学生中,从身高在
之间的男生和身高在
之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:


(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的

| ![]() | ![]() | 总计 |
男生身高 | | | |
女生身高 | | | |
总计 | | | |
(3)在上述100名学生中,从身高在


参考公式:

参考数据:
![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 5.024 | 6.635 | 7.879 | 10.828 |
垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的
名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于
项的称为“比较了解”少于三项的称为“不太了解”调查结果如下:
(1)完成如下
列联表并判断是否有
的把握认为了解垃圾分类与性别有关?
(2)抽取的
名高中生中按照男、女生采用分层抽样的方法抽取
人的样本.
(i)求抽取的女生和男生的人数;
(ii)从
人的样本中随机抽取两人,求两人都是女生的概率.
参考数据:
,
.


| ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男生(人) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
女生(人) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)完成如下


| 比较了解 | 不太了解 | 合计 |
男生 | ________ | ________ | ________ |
女生 | ________ | ________ | ________ |
合计 | ________ | ________ | ________ |
(2)抽取的


(i)求抽取的女生和男生的人数;
(ii)从

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |


2019年某地区初中升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试.某学校在九年级上学期开始,就为掌握全年级学生1分钟跳绳情况,抽取了100名学生进行测试,得到下面的频率分布直方图.

(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的
列联表,并根据这100名学生的测试成绩,判断能否有99%的把握认为学生1分钟跳绳成绩是否优秀与性别有关.
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数
服从正态分布
,用样本数据的平均值和标准差估计
和
,各组数据用中点值代替),估计正式测试时1分钟跳绳个数大于183的人数(结果四舍五入到整数
附:
,其中
.
若随机变量
服从正态分布
,则


(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的

1分钟跳绳成绩 | 优秀 | 不优秀 | 合计 |
男生人数 | 28 | | |
女生人数 | | | 100 |
合计 | | | 100 |
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数




附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
若随机变量





某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?

(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?

(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.

每年春晚都是万众瞩目的时刻,这些节目体现的文化内涵、历史背景等反映了社会的进步.国家的富强,人民生活水平的提高等.某学校高三年级主任开学初为了解学生在看春晚后对节目体现的文化内涵、历史背景等是否会在今年的高考题中体现进行过思考,特地随机抽取100名高三学生(其中文科学生50,理科学生50名),进行了调查.统计数据如表所示(不完整):
(1)补充完整所给表格,并根据表格数据计算是否有
的把握认为看春晚后会思考节目体现的文化内涵、历史背景等与文理科学生有关;
(2)①现从上表的”思考过”的文理科学生中按分层抽样选出7人.再从这7人中随机抽取4人,记这4人中“文科学生”的人数为
,试求
的分布列与数学期望;
②现设计一份试卷(题目知识点来自春晚相关知识整合与变化),假设“思考过”的学生及格率为
,“没有思考过”的学生的及格率为
.现从“思考过”与“没有思考过”的学生中分别随机抽取一名学生进行测试,求两人至少有一个及格的概率.
附参考公式:
,其中
.
参考数据:
| “思考过” | “没有思考过” | 总计 |
文科学生 | 40 | 10 | |
理科学生 | 30 | | |
总计 | | | 100 |
(1)补充完整所给表格,并根据表格数据计算是否有

(2)①现从上表的”思考过”的文理科学生中按分层抽样选出7人.再从这7人中随机抽取4人,记这4人中“文科学生”的人数为


②现设计一份试卷(题目知识点来自春晚相关知识整合与变化),假设“思考过”的学生及格率为


附参考公式:


参考数据:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
参考公式:
,
参考数据:
,
,
,
.
| 喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 |
男生 | | 15 | |
女生 | 15 | | |
合计 | | | |
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
参考公式:


参考数据:




某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )
表1 | | 表2 | | 表3 | |||||||||
语文 性别 | 不及格 | 及格 | 总计 | 数学 性别 | 不及格 | 及格 | 总计 | | 英语 性别 | 不及格 | 及格 | 总计 | |
男 | 14 | 36 | 50 | 男 | 10 | 40 | 50 | 男 | 25 | 25 | 50 | ||
女 | 16 | 34 | 50 | 女 | 20 | 30 | 50 | 女 | 5 | 45 | 50 | ||
总计 | 30 | 70 | 100 | 总计 | 30 | 70 | 100 | 总计 | 30 | 70 | 100 |
A.语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 |
B.数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小 |
C.英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小 |
D.英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 |