为研究两变量的线性相关性,甲、乙两人分别作了研究,利用线性回归方程得到回归直线,两人计算相同,也相同,则下列说法正确的是()
A.重合
B.平行
C.交于点(
D.无法判定是否相交
当前题号:1 | 题型:单选题 | 难度:0.99
某媒体为调查喜爱娱乐节目是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:

(1)根据该等高条形图,完成下列列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众性别有关?

(2)从男性观众中按喜欢节目与否,用分层抽样的方法抽取5名做进一步调查.从这5名中任选2名,求恰有1名喜欢节目和1名不喜欢节目的概率.
附:

0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于分为“成绩优良”.

(1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?
 
甲班
乙班
总计
成绩优良
 
 
 
成绩不优良
 
 
 
总计
 
 
 
 
(2)从甲、乙两班个样本中,成绩在分以下(不含分)的学生中任意选取人,求这人来自不同班级的概率.
附:,其中














 
当前题号:3 | 题型:解答题 | 难度:0.99
某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.
(1)完成下列列联表,并判断是否有的把握认为愿意参与志愿活动与性别有关?

 
愿意
不愿意
总计
男生
 
 
 
女生
 
 
 
总计
 
 
 
 
(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率.
参考数据及公式:










 
.
当前题号:4 | 题型:解答题 | 难度:0.99
武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,2018年1月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.

(1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);
(2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i=1,2,…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合yx的关系,试求y关于x的回归方程(系数精确到整数);
参考公式及数据:40,660,xiyi=206630,x12968,
(3)公司策划部选1200lnx+5000和x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):
 

x3+1200

52446.95
122.89

124650
相关指数
R
R
 
相关指数:R2=1
i)试比较R12R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;
ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?
当前题号:5 | 题型:解答题 | 难度:0.99
下面是列联表
 


总计








总计


 
 
则表中处的值为(   )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
下面是22列联表,则表中a,b处的值为(  )
 


总计

a
21
73

7
20
27
总计
b
41
100
 
A.94,96B.52,40C.52,59D.59,52
当前题号:7 | 题型:单选题 | 难度:0.99
为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如表的列联表:
 
喜欢打篮球
不喜欢打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
 
已知在全部50人中喜欢打篮球的学生为30人.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜欢打篮球与性别有关?请说明你的理由.
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中.
当前题号:8 | 题型:解答题 | 难度:0.99
2019年春节期间,当红影视明星翟天临“不知”“知网”学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的2019年部门预算中透露,2019年教育部拟抽检博士学位论文约篇,预算为万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送位同行专家进行评议,位专家中有位以上(含位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”;有且只有位专家评议意见为“不合格”的学位论文,将再送位同行专家进行复评. 位复评专家中有位以上(含位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”设每篇学位论文被每位专家评议为“不合格”的概率均为且各篇学位论文是否被评议为“不合格”相互独立.
(1)相关部门随机地抽查了位博士硕士的论文,每人一篇,抽检是否合格,抽检得到的部分数据如下表所示:
 
合格
不合格
博士学位论文


硕士学位论文


 
通过计算说明是否有的把握认为论文是否合格与作者的学位高低有关系?
(2)若,记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求的值;
(3)若拟定每篇抽检论文不需要复评的评审费用为元,需要复评的评审费用为元;除评审费外,其他费用总计为万元现以此方案实施,且抽检论文为篇,问是否会超过预算?并说明理由.
临界值表:












 
参考公式,其中
当前题号:9 | 题型:解答题 | 难度:0.99
某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.

(1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?
 
甲班
乙班
总计
成绩优良
 
 
 
成绩不优良
 
 
 
总计
 
 
 
 
(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记来自甲班的人数为,求的分布列与数学期望.
附:(其中










 
当前题号:10 | 题型:解答题 | 难度:0.99